DOI QR코드

DOI QR Code

DoA Estimating Algorithm Based on ESPRIT by Stepwise Estimating Correlation Matrix

단계적 상관 행렬 추정에 따른 ESPRIT 기반 앰 추정 알고리즘

  • Shim, Jae-Nam (School of Electrical and Electronic Engineering, Yonsei University) ;
  • Park, Hongseok (School of Electrical and Electronic Engineering, Yonsei University) ;
  • Kim, Donghyun (Agency for Defense Developent, The 2nd R&D Institute) ;
  • Kim, Dong Ku (School of Electrical and Electronic Engineering, Yonsei University)
  • Received : 2016.07.31
  • Accepted : 2016.11.18
  • Published : 2016.11.30

Abstract

By increased moving speed of aircraft, estimating location of itself becomes more important than ever. This requirement is satisfied by appearance of GPS, however it is useless when signal reception from satellite is not good enough by interruption, for example, traffic jamming. Applying link for communication to additional positioning system is capable of providing relative position of aircraft. Estimating location with link for communication is done without additional equipment but with signal processing based on correlation of received signal. ESPRIT is one of the representative algorithm among them. Estimating correlation matrix is possible to have error since it includes average operation needs enough number of samples not impractical. Therefore we propose algorithm that defines, estimates and removes error matrix of correlation. Proposing algorithm shows better performance than previous one when transmitters are close.

항공기의 이동속도의 증가로 인해 위치 측위의 중요성이 더욱 부각되고 있다. 이러한 요구는 GPS의 등장으로 충족되었으나 이는 트래픽 재밍 등 위성으로부터의 신호 수신이 어려운 경우에는 측위가 불가능하게 된다. 이러한 경우 통신용 링크가 측위에 부가적으로 사용된다면 상대적인 위치를 추정하여 위치를 추정할 수 있다. 통신용 링크를 이용한 측위는 추가적인 장치 없이 신호 처리만으로 위치를 추정할 수 있는데 대표적으로 ESPRIT이 존재하며 이는 수신 신호의 상관 행렬을 기반으로 한다. 이론적으로 상관 행렬의 추정에는 평균 연산이 필요하나 이는 실제 상황에서 많은 수의 샘플이 필요해 충분한 샘플이 주어지지 않은 경우 오류가 발생할 수 있다. 이에 적은 수의 샘플에서의 상관 행렬의 오류 행렬을 정의하고 추정하여 순시적으로 제거하는 알고리즘을 제시한다. 제안하는 알고리즘은 송신기가 밀집되어 있는 경우 기존의 알고리즘에 비해 우세한 성능을 보인다.

Keywords

References

  1. J. M. Wilson, Military GPS User Equipment (MGUE)(2015), Retrieved July, 30, 2016, from http://www.gps.gov/multimedia/presentations/2015/04/partnership/wilson.pdf
  2. 5G Forum, 5G Vision, Requirements, and Enabling Technologies(2016), Retrieved July, 30, 2016, from http://kani.or.kr/5g/whitepaper/5G%20Vision,%20Requirements,%20and%20Enabling%20Technologies.pdf
  3. 5G PPP, 5G Automotive Vision(2015), Retrieved July, 30, 2016, from https://5g-ppp.eu/wp-content/uploads/2014/02/5G-PPP-White-Paper-on-Automotive-Vertical-Sectors.pdf
  4. R. O. Schmidt, "Multiple emitter location and signal parameter estimation," IEEE Trans. Ant. and Propaga., vol. ap-34, no. 3, pp. 276-280, Mar. 1986.
  5. A. Paulraj, R. Roy, and T. Kailath, "Estimation of signal parameters via rotational invariance techniques-ESPRIT," in MILCOM 1986, pp. 41.6.1-41.6.5, Monterey, CA, USA, Oct. 1986.
  6. B. Ottersten, M. Viberg, and T. Kailath, "Performance analysis of the total least squares ESPRIT algorithm," IEEE Trans. Sign. Process., vol. 39, no. 5, pp. 1122-1135, May 1991. https://doi.org/10.1109/78.80967
  7. N. Yuen and B. Friedlander, "Asymptotic performance analysis of ESPRIT, higher order ESPRIT, and virtual ESPRIT algorithms," IEEE Trans. Sign. Process., vol. 44, no. 10, pp. 2537-2550, Oct. 1996. https://doi.org/10.1109/78.539037
  8. J.-H. Shin, H.-R. Park, and E. Chang, "An ESPRIT-Based super-resolution time delay estimation algorithm for real-time locating systems," J. KICS, vol. 38A, no. 04, pp. 310-317, Apr. 2013. https://doi.org/10.7840/kics.2013.38A.4.310
  9. S. Yun, J. Oh, J. O Kim, S. Choi, and J. M. Ahn, "Averaging methods for enhancing the performance of DOA estimation under the rotor effect," J. KICS, vol. 37C, no. 12, pp. 1245-1255, Dec. 2012. https://doi.org/10.7840/kics.2012.37C.12.1245
  10. C. Jung and J. Kim, "Performance analysis of modified ESPRIT algorithm," J. KICS, vol. 26, no. 3B, pp. 259-265, Mar. 2001.