References
- Berland T, Oldenburg WA. Acute mesenteric ischemia. Curr Gastroenterol Rep. 2008;10:341-346. https://doi.org/10.1007/s11894-008-0065-0
- Douzinas EE, Pitaridis MT, Patsouris E, Kollias S, Boursinos V, Karmpaliotis DI, Gratsias Y, Evangelou E, Papalois A, Konstantinidou AE, Roussos C. Myocardial ischemia in intestinal postischemic shock: the effect of hypoxemic reperfusion. Crit Care Med. 2003;31:2183-2189. https://doi.org/10.1097/01.CCM.0000080488.30157.D8
- Hassoun HT, Kone BC, Mercer DW, Moody FG, Weisbrodt NW, Moore FA. Post-injury multiple organ failure: the role of the gut. Shock. 2001;15:1-10.
- Mitic LL, Van Itallie CM, Anderson JM. Molecular physiology and pathophysiology of tight junctions I. Tight junction structure and function: lessons from mutant animals and proteins. Am J Physiol Gastrointest Liver Physiol. 2000;279:G250-254. https://doi.org/10.1152/ajpgi.2000.279.2.G250
- Li Q, Zhang Q, Wang C, Liu X, Qu L, Gu L, Li N, Li J. Altered distribution of tight junction proteins after intestinal ischaemia/reperfusion injury in rats. J Cell Mol Med. 2009;13:4061-4076. https://doi.org/10.1111/j.1582-4934.2009.00975.x
- Gonzalez-Mariscal L, Betanzos A, Avila-Flores A. MAGUK proteins: structure and role in the tight junction. Semin Cell Dev Biol. 2000;11:315-324. https://doi.org/10.1006/scdb.2000.0178
-
Shen ZY, Zhang J, Song HL, Zheng WP. Bone-marrow mesenchymal stem cells reduce rat intestinal ischemia-reperfusion injury, ZO-1 downregulation and tight junction disruption via a
$TNF-{\alpha}$ -regulated mechanism. World J Gastroenterol. 2013;19:3583-3595. https://doi.org/10.3748/wjg.v19.i23.3583 - Poritz LS, Garver KI, Green C, Fitzpatrick L, Ruggiero F, Koltun WA. Loss of the tight junction protein ZO-1 in dextran sulfate sodium induced colitis. J Surg Res. 2007;140:12-19. https://doi.org/10.1016/j.jss.2006.07.050
- Epstein J, Sanderson IR, Macdonald TT. Curcumin as a therapeutic agent: the evidence from in vitro, animal and human studies. Br J Nutr. 2010;103:1545-1557. https://doi.org/10.1017/S0007114509993667
- Cho YJ, Yi CO, Jeon BT, Jeong YY, Kang GM, Lee JE, Roh GS, Lee JD. Curcumin attenuates radiation-induced inflammation and fibrosis in rat lungs. Korean J Physiol Pharmacol. 2013;17:267-274. https://doi.org/10.4196/kjpp.2013.17.4.267
- Kim KC, Lee C. Curcumin induces downregulation of E2F4 expression and apoptotic cell death in HCT116 human colon cancer cells; involvement of reactive oxygen species. Korean J Physiol Pharmacol. 2010;14:391-397. https://doi.org/10.4196/kjpp.2010.14.6.391
- Karatepe O, Gulcicek OB, Ugurlucan M, Adas G, Battal M, Kemik A, Kamali G, Altug T, Karahan S. Curcumin nutrition for the prevention of mesenteric ischemia-reperfusion injury: an experimental rodent model. Transplant Proc. 2009;41:3611-3616. https://doi.org/10.1016/j.transproceed.2009.08.002
- Nurullahoglu-Atalik KE, Okudan N, Belviranli M, Gokbel H, Oz M, Esen H. Role of curcumin in mesenteric ischemia -reperfusion injury in rats. Bratisl Lek Listy. 2012;113:465-470.
- Yucel AF, Kanter M, Pergel A, Erboga M, Guzel A. The role of curcumin on intestinal oxidative stress, cell proliferation and apoptosis after ischemia/reperfusion injury in rats. J Mol Histol. 2011;42:579-587. https://doi.org/10.1007/s10735-011-9364-0
- Sahebkar A. Molecular mechanisms for curcumin benefits against ischemic injury. Fertil Steril. 2010;94:e75-76. https://doi.org/10.1016/j.fertnstert.2010.07.1071
- Chiu CJ, McArdle AH, Brown R, Scott HJ, Gurd FN. Intestinal mucosal lesion in low-flow states. I. A morphological, hemodynamic, and metabolic reappraisal. Arch Surg. 1970;101:478-483. https://doi.org/10.1001/archsurg.1970.01340280030009
- Jiang H, Qu L, Li Y, Gu L, Shi Y, Zhang J, Zhu W, Li J. Bone marrow mesenchymal stem cells reduce intestinal ischemia/reperfusion injuries in rats. J Surg Res. 2011;168:127-134. https://doi.org/10.1016/j.jss.2009.07.035
- Deitch EA, Morrison J, Berg R, Specian RD. Effect of hemorrhagic shock on bacterial translocation, intestinal morphology, and intestinal permeability in conventional and antibiotic-decontaminated rats. Crit Care Med. 1990;18:529-536. https://doi.org/10.1097/00003246-199005000-00014
- Costantini TW, Deree J, Loomis W, Putnam JG, Choi S, Baird A, Eliceiri BP, Bansal V, Coimbra R. Phosphodiesterase inhibition attenuates alterations to the tight junction proteins occludin and ZO-1 in immunostimulated Caco-2 intestinal monolayers. Life Sci. 2009;84:18-22. https://doi.org/10.1016/j.lfs.2008.10.007
- Arrieta MC, Madsen K, Doyle J, Meddings J. Reducing small intestinal permeability attenuates colitis in the IL10 gene-deficient mouse. Gut. 2009;58:41-48. https://doi.org/10.1136/gut.2008.150888
- Hou Y, Wang L, Zhang W, Yang Z, Ding B, Zhu H, Liu Y, Qiu Y, Yin Y, Wu G. Protective effects of N-acetylcysteine on intestinal functions of piglets challenged with lipopolysaccharide. Amino Acids. 2012;43:1233-1242. https://doi.org/10.1007/s00726-011-1191-9
- Sun Q, Meng QT, Jiang Y, Liu HM, Lei SQ, Su WT, Duan WN, Wu Y, Xia ZY, Xia ZY. Protective effect of ginsenoside Rb1 against intestinal ischemia-reperfusion induced acute renal injury in mice. PLoS One. 2013;8:e80859. https://doi.org/10.1371/journal.pone.0080859
- Musch MW, Walsh-Reitz MM, Chang EB. Roles of ZO-1, occludin, and actin in oxidant-induced barrier disruption. Am J Physiol Gastrointest Liver Physiol. 2006;290:G222-231. https://doi.org/10.1152/ajpgi.00301.2005
- Ma TY, Boivin MA, Ye D, Pedram A, Said HM. Mechanism of TNF-{alpha} modulation of Caco-2 intestinal epithelial tight junction barrier: role of myosin light-chain kinase protein expression. Am J Physiol Gastrointest Liver Physiol. 2005;288:G422-430. https://doi.org/10.1152/ajpgi.00412.2004
- Wang F, Graham WV, Wang Y, Witkowski ED, Schwarz BT, Turner JR. Interferon-gamma and tumor necrosis factor-alpha synergize to induce intestinal epithelial barrier dysfunction by up-regulating myosin light chain kinase expression. Am J Pathol. 2005;166:409-419. https://doi.org/10.1016/S0002-9440(10)62264-X
-
Al-Sadi R, Guo S, Ye D, Ma TY.
$TNF-{\alpha}$ modulation of intestinal epithelial tight junction barrier is regulated by ERK1/2 activation of Elk-1. Am J Pathol. 2013;183:1871-1884. https://doi.org/10.1016/j.ajpath.2013.09.001 -
Song HL, Lu S, Ma L, Li Y, Liu P. Effect of
$TNF-{\alpha}$ on tight junctions between the epithelial cells of intestinal mucosal barrier. World Chin J Digestol. 2004;12:1303-1306. https://doi.org/10.11569/wcjd.v12.i6.1303 - Suenaert P, Bulteel V, Lemmens L, Noman M, Geypens B, Van Assche G, Geboes K, Ceuppens JL, Rutgeerts P. Anti-tumor necrosis factor treatment restores the gut barrier in Crohn's disease. Am J Gastroenterol. 2002;97:2000-2004. https://doi.org/10.1111/j.1572-0241.2002.05914.x
- Bruewer M, Utech M, Ivanov AI, Hopkins AM, Parkos CA, Nusrat A. Interferon-gamma induces internalization of epithelial tight junction proteins via a macropinocytosis-like process. FASEB J. 2005;19:923-933. https://doi.org/10.1096/fj.04-3260com
- Ma TY, Iwamoto GK, Hoa NT, Akotia V, Pedram A, Boivin MA, Said HM. TNF-alpha-induced increase in intestinal epithelial tight junction permeability requires NF-kappa B activation. Am J Physiol Gastrointest Liver Physiol. 2004;286:G367-376. https://doi.org/10.1152/ajpgi.00173.2003
- Grootjans J, Lenaerts K, Derikx JP, Matthijsen RA, de Bruine AP, van Bijnen AA, van Dam RM, Dejong CH, Buurman WA. Human intestinal ischemia-reperfusion-induced inflammation characterized: experiences from a new translational model. Am J Pathol. 2010;176:2283-2291. https://doi.org/10.2353/ajpath.2010.091069
-
Yang Q, Zheng FP, Zhan YS, Tao J, Tan SW, Liu HL, Wu B. Tumor necrosis factor-
$\alpha$ mediates JNK activation response to intestinal ischemia-reperfusion injury. World J Gastroenterol. 2013;19:4925-4934. https://doi.org/10.3748/wjg.v19.i30.4925
Cited by
- Transcription factors Nrf2 and NF-κB contribute to inflammation and apoptosis induced by intestinal ischemia-reperfusion in mice vol.40, pp.6, 2016, https://doi.org/10.3892/ijmm.2017.3170
- Curcumin Inhibits Chondrocyte Hypertrophy of Mesenchymal Stem Cells through IHH and Notch Signaling Pathways vol.65, pp.8, 2016, https://doi.org/10.1248/cpb.c17-00225
- The Problem of Curcumin and Its Bioavailability: Could Its Gastrointestinal Influence Contribute to Its Overall Health-Enhancing Effects? vol.9, pp.1, 2018, https://doi.org/10.1093/advances/nmx011
- Curcumin-mediated regulation of intestinal barrier function: The mechanism underlying its beneficial effects vol.6, pp.1, 2016, https://doi.org/10.1080/21688370.2018.1425085
- Curcumin, Cardiometabolic Health and Dementia vol.15, pp.10, 2016, https://doi.org/10.3390/ijerph15102093
- Increased systemic zonula occludens 1 associated with inflammation and independent biomarker in patients with hepatocellular carcinoma vol.18, pp.None, 2016, https://doi.org/10.1186/s12885-018-4484-5
- Curcumin attenuates palmitic acid-induced cell apoptosis by inhibiting endoplasmic reticulum stress in H9C2 cardiomyocytes vol.38, pp.6, 2016, https://doi.org/10.1177/0960327119836222
- Gut Ischemia Reperfusion Injury Induces Lung Inflammation via Mesenteric Lymph-Mediated Neutrophil Activation vol.11, pp.None, 2016, https://doi.org/10.3389/fimmu.2020.586685
- Evaluation of the articular cartilage in the knees of rats with induced arthritis treated with curcumin vol.15, pp.3, 2020, https://doi.org/10.1371/journal.pone.0230228
- Influence of Mushroom Polysaccharide, Nano-Copper, Copper Loaded Chitosan, and Lysozyme on Intestinal Barrier and Immunity of LPS-mediated Yellow-Feathered Chickens vol.10, pp.4, 2016, https://doi.org/10.3390/ani10040594
- Hydrogen-rich saline protects intestinal epithelial tight junction barrier in rats with intestinal ischemia–reperfusion injury by inhibiting endoplasmic reticulum stress-induced apoptosis pathwa vol.55, pp.12, 2020, https://doi.org/10.1016/j.jpedsurg.2020.01.061
- Effects of magnolol on egg production, egg quality, antioxidant capacity, and intestinal health of laying hens in the late phase of the laying cycle vol.100, pp.2, 2021, https://doi.org/10.1016/j.psj.2020.10.047
- Movement of prion‐like α‐synuclein along the gut–brain axis in Parkinson's disease: A potential target of curcumin treatment vol.54, pp.2, 2016, https://doi.org/10.1111/ejn.15324
- Curcumin Reduces Adipose Tissue Inflammation and Alters Gut Microbiota in Diet‐Induced Obese Male Mice vol.65, pp.22, 2016, https://doi.org/10.1002/mnfr.202100274
- Tight junction protein ZO-1 in Kawasaki disease vol.21, pp.1, 2016, https://doi.org/10.1186/s12887-021-02622-2