DOI QR코드

DOI QR Code

Effect of Antioxidant Flavonoids (Quercetin and Taxifolin) on In vitro Maturation of Porcine Oocytes

  • Kang, Jung-Taek (Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University) ;
  • Moon, Joon Ho (Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University) ;
  • Choi, Ji-Yei (Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University) ;
  • Park, Sol Ji (Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University) ;
  • Kim, Su Jin (Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University) ;
  • Saadeldin, Islam M. (Department of Physiology, Faculty of Veterinary Medicine, Zagazig University) ;
  • Lee, Byeong Chun (Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University)
  • Received : 2015.04.20
  • Accepted : 2015.07.17
  • Published : 2016.03.01

Abstract

Quercetin (QT) and taxifolin (TF) are structurally similar plant-derived flavonoids that have antioxidant properties and act as free radical scavengers. The objective of this study was to investigate effects of QT and TF on nuclear maturation of porcine oocytes. Effects of TF at 0, 1, 10, and $50{\mu}g/mL$ on oocyte nuclear maturation (polar body extrusion) were investigated. After incubation for 44 h, there were no significant differences between the treatment and control groups except in the $50{\mu}g/mL$ group which was significantly lower (59.2%, p<0.05) than the other groups (control: >80%). After parthenogenetic activation, further in vitro development of QT- or TF-treated vs control oocytes was investigated. A significantly higher proportion of QT-treated ($1{\mu}g/mL$) oocytes developed into blastocysts compared to controls (24.3% vs 16.8%, respectively); however, cleavage rate and blastocyst cell number were not affected. The TF-treated group was not significantly different from controls. Levels of reactive oxygen species (ROS) and intracellular glutathione (GSH) in oocytes and embryos in a culture medium supplemented with QT or TF were measured. Both treatment groups had significantly lower (p<0.05) levels of ROS than controls, however GSH levels were different only in QT-treated oocytes. We conclude that exogenous flavonoids such as QT and TF reduce ROS levels in oocytes. Although at high concentration ($50{\mu}g/mL$) both QT and TF appear to be toxic to oocytes.

Keywords

References

  1. Abeydeera, L. R., W. H. Wang, T. C. Cantley, R. S. Prather, and B. N. Day. 1998. Presence of beta-mercaptoethanol can increase the glutathione content of pig oocytes matured in vitro and the rate of blastocyst development after in vitro fertilization. Theriogenology 50:747-756. https://doi.org/10.1016/S0093-691X(98)00180-0
  2. Bagchi, D., O. R. Carryl, M. X. Tran, M. Bagchi, A. Garg, M. M. Milnes, C. B. Williams, J. Balmoori, D. J. Bagchi, S. Mitra, and S. J. Stohs. 1999. Acute and chronic stress-induced oxidative gastrointestinal mucosal injury in rats and protection by bismuth subsalicylate. Mol. Cell Biochem. 196:109-116. https://doi.org/10.1023/A:1006978431521
  3. Boquest, A. C., L. R. Abeydeera, W. H. Wang, and B. N. Day. 1999. Effect of adding reduced glutathione during insemination on the development of porcine embryos in vitro. Theriogenology 51:1311-1319. https://doi.org/10.1016/S0093-691X(99)00075-8
  4. de Matos, D. G. and C. C. Furnus. 2000. The importance of having high glutathione (GSH) level after bovine in vitro maturation on embryo development: Effect of beta-mercaptoethanol, cysteine and cystine. Theriogenology 53:761-771. https://doi.org/10.1016/S0093-691X(99)00278-2
  5. Galeati, G., C. Vallorani, D. Bucci, C. Bernardini, C. Tamanini, A. Parmeggiani, and M. Spinaci. 2010. Daidzein does affect progesterone secretion by pig cumulus cells but it does not impair oocytes IVM. Theriogenology 74:451-457. https://doi.org/10.1016/j.theriogenology.2010.02.028
  6. Guerin, P., S. El Mouatassim, and Y. Menezo. 2001. Oxidative stress and protection against reactive oxygen species in the pre-implantation embryo and its surroundings. Hum. Reprod. Update 7:175-189. https://doi.org/10.1093/molehr/7.2.175
  7. Jefferson, W. N., E. Padilla-Banks, E. H. Goulding, S. P. Lao, R. R. Newbold, and C. J. Williams. 2009. Neonatal exposure to genistein disrupts ability of female mouse reproductive tract to support preimplantation embryo development and implantation. Biol. Reprod. 80:425-431. https://doi.org/10.1095/biolreprod.108.073171
  8. Johnson, M. H. and M. H. Nasr-Esfahani. 1994. Radical solutions and cultural problems: could free oxygen radicals be responsible for the impaired development of preimplantation mammalian embryos in vitro? Bioessays 16:31-38. https://doi.org/10.1002/bies.950160105
  9. Kang, J. T., M. Atikuzzaman, D. K. Kwon, S. J. Park, S. J. Kim, J. H. Moon, O. J. Koo, G. Jang, and B. C. Lee. 2012. Developmental competence of porcine oocytes after in vitro maturation and in vitro culture under different oxygen concentrations. Zygote 20:1-8. https://doi.org/10.1017/S0967199411000426
  10. Kang, J. T., O. J. Koo, D. K. Kwon, H. J. Park, G. Jang, S. K. Kang, and B. C. Lee. 2009. Effects of melatonin on in vitro maturation of porcine oocyte and expression of melatonin receptor RNA in cumulus and granulosa cells. J. Pineal Res. 46:22-28. https://doi.org/10.1111/j.1600-079X.2008.00602.x
  11. Kang, J. T., D. K. Kwon, S. J. Park, S. J. Kim, J. H. Moon, O. J. Koo, G. Jang, and B. C. Lee. 2013. Quercetin improves the in vitro development of porcine oocytes by decreasing reactive oxygen species levels. J. Vet. Sci. 14:15-20. https://doi.org/10.4142/jvs.2013.14.1.15
  12. Kim, J. H., S. H. Lee, S. Kim, Y. W. Jeong, O. J. Koo, M. D. Hashem, S. M. Park, E. G. Lee, M. S. Hossein, S. K. Kang, B. C. Lee, and W. S. Hwang. 2006. Embryotrophic effects of ethylenediaminetetraacetic acid and hemoglobin on in vitro porcine embryos development. Theriogenology 66:449-455. https://doi.org/10.1016/j.theriogenology.2005.12.008
  13. Kure-bayashi, S., M. Miyake, K. Okada, and S. Kato. 2000. Successful implantation of in vitro-matured, electro-activated oocytes in the pig. Theriogenology 53:1105-1119. https://doi.org/10.1016/S0093-691X(00)00256-9
  14. Kwon, J. H., S. B. Kim, K. H. Park, and M. W. Lee. 2011. Antioxidative and anti-inflammatory effects of phenolic compounds from the roots of Ulmus macrocarpa. Arch. Pharm. Res. 34:1459-1466. https://doi.org/10.1007/s12272-011-0907-4
  15. Makena, P. S., S. C. Pierce, K. T. Chung and S. E. Sinclair. 2009. Comparative mutagenic effects of structurally similar flavonoids quercetin and taxifolin on tester strains Salmonella typhimurium TA102 and Escherichia coli WP-2 uvrA. Environ. Mol. Mutagen. 50:451-459. https://doi.org/10.1002/em.20487
  16. Naderi, G. A., S. Asgary, N. Sarraf-Zadegan, and H. Shirvany. 2003. Anti-oxidant effect of flavonoids on the susceptibility of LDL oxidation. Mol. Cell Biochem. 246:193-196. https://doi.org/10.1023/A:1023483223842
  17. Santini, S. E., G. Basini, S. Bussolati, and F. Grasselli. 2009. The phytoestrogen quercetin impairs steroidogenesis and angiogenesis in swine granulosa cells in vitro. J. Biomed. Biotechnol. Article ID 419891.
  18. Tang, X., C. Zhang, W. Zeng, Y. Mi, and H. Liu. 2006. Proliferating effects of the flavonoids daidzein and quercetin on cultured chicken primordial germ cells through antioxidant action. Cell Biol. Int. 30:445-451. https://doi.org/10.1016/j.cellbi.2006.02.004
  19. Tao, Y., B. Zhou, G. Xia, F. Wang, Z. Wu, and M. Fu. 2004. Exposure to L-ascorbic acid or alpha-tocopherol facilitates the development of porcine denuded oocytes from metaphase I to metaphase II and prevents cumulus cells from fragmentation. Reprod. Domest. Anim. 39:52-57. https://doi.org/10.1046/j.1439-0531.2003.00478.x
  20. Telugu, B. P., T. Ezashi, S. Sinha, A. P. Alexenko, L. Spate, R. S. Prather, and R. M. Roberts. 2011. Leukemia inhibitory factor (LIF)-dependent, pluripotent stem cells established from inner cell mass of porcine embryos. J. Biol. Chem. 286:28948-28953. https://doi.org/10.1074/jbc.M111.229468
  21. Whitaker, B. D. and J. W. Knight. 2004. Exogenous gammaglutamyl cycle compounds supplemented to in vitro maturation medium influence in vitro fertilization, culture, and viability parameters of porcine oocytes and embryos. Theriogenology 62:311-322. https://doi.org/10.1016/j.theriogenology.2003.10.014
  22. Yang, H. W., K. J. Hwang, H. C. Kwon, H. S. Kim, K. W. Choi, and K. S. Oh. 1998. Detection of reactive oxygen species (ROS) and apoptosis in human fragmented embryos. Hum. Reprod. 13:998-1002. https://doi.org/10.1093/humrep/13.4.998
  23. You, J., J. Kim, J. Lim, and E. Lee. 2010. Anthocyanin stimulates in vitro development of cloned pig embryos by increasing the intracellular glutathione level and inhibiting reactive oxygen species. Theriogenology 74:777-785. https://doi.org/10.1016/j.theriogenology.2010.04.002
  24. Yuan, Z. P., L. J. Chen, L. Y. Fan, M. H. Tang, G. L. Yang, H. S. Yang, X. B. Du, G. Q. Wang, W. X. Yao, Q. M. Zhao, B. Ye, R. Wang, P. Diao, W. Zhang, H. B. Wu, X. Zhao, and Y. Q. Wei. 2006. Liposomal quercetin efficiently suppresses growth of solid tumors in murine models. Clin. Cancer Res. 12:3193-3199. https://doi.org/10.1158/1078-0432.CCR-05-2365

Cited by

  1. Querectin Alleviates Zinc Oxide Nanoreprotoxicity in Male Albino Rats vol.30, pp.10, 2016, https://doi.org/10.1002/jbt.21812
  2. The mechanism of (+) taxifolin’s protective antioxidant effect for •OH-treated bone marrow-derived mesenchymal stem cells vol.22, pp.1, 2017, https://doi.org/10.1186/s11658-017-0066-9
  3. Mechanistically elucidating the in vitro safety and efficacy of a novel doxorubicin derivative vol.7, pp.4, 2017, https://doi.org/10.1007/s13346-017-0379-2
  4. Taxifolin Resensitizes Multidrug Resistance Cancer Cells via Uncompetitive Inhibition of P-Glycoprotein Function vol.23, pp.12, 2018, https://doi.org/10.3390/molecules23123055
  5. Progesterone influences cytoplasmic maturation in porcine oocytes developing in vitro vol.4, pp.None, 2016, https://doi.org/10.7717/peerj.2454
  6. Effect of ferulic acid supplementation on the developmental competence of porcine embryos during in vitro maturation vol.80, pp.6, 2018, https://doi.org/10.1292/jvms.18-0131
  7. Dietary bioflavonoid quercetin modulates porcine ovarian granulosa cell functions in vitro vol.54, pp.6, 2016, https://doi.org/10.1080/03601234.2019.1586034
  8. Ethanolic Extract of Dried Leaves from the Cerrado Biome Increases the Cryotolerance of Bovine Embryos Produced In Vitro vol.2020, pp.None, 2016, https://doi.org/10.1155/2020/6046013
  9. Low-dose Roundup induces developmental toxicity in bovine preimplantation embryos in vitro vol.27, pp.14, 2020, https://doi.org/10.1007/s11356-020-08183-8
  10. The effect of low and ultra-low oxygen tensions on mammalian embryo culture and development in experimental and clinical IVF vol.66, pp.4, 2016, https://doi.org/10.1080/19396368.2020.1754961
  11. Curcumin supplementation in the maturation medium improves the maturation, fertilisation and developmental competence of porcine oocytes vol.68, pp.3, 2016, https://doi.org/10.1556/004.2020.00041
  12. Curcumin supplementation in the maturation medium improves the maturation, fertilisation and developmental competence of porcine oocytes vol.68, pp.3, 2016, https://doi.org/10.1556/004.2020.00041
  13. Quercetin supports bovine preimplantation embryo development under oxidative stress condition via activation of the Nrf2 signalling pathway vol.55, pp.10, 2016, https://doi.org/10.1111/rda.13688
  14. Overview of biological effects of Quercetin on ovary vol.35, pp.1, 2021, https://doi.org/10.1002/ptr.6750
  15. Modified Spirulina maxima Pectin Nanoparticles Improve the Developmental Competence of In Vitro Matured Porcine Oocytes vol.11, pp.9, 2021, https://doi.org/10.3390/ani11092483
  16. Impact of the antioxidant quercetin on morphological integrity and follicular development in the in vitro culture of Bos indicus female ovarian fragments vol.57, pp.9, 2016, https://doi.org/10.1007/s11626-021-00629-8
  17. Tannin Supplementation Improves Oocyte Cytoplasmic Maturation and Subsequent Embryo Development in Pigs vol.10, pp.10, 2016, https://doi.org/10.3390/antiox10101594