DOI QR코드

DOI QR Code

Characterizing Milk Production Related Genes in Holstein Using RNA-seq

  • Seo, Minseok (Interdisciplinary Program in Bioinformatics, Seoul National University) ;
  • Lee, Hyun-Jeong (Interdisciplinary Program in Bioinformatics, Seoul National University) ;
  • Kim, Kwondo (Department of Agricultural Biotechnology, Animal Biotechnology Major, and Research Institute of Agriculture and Life Sciences, Seoul National University) ;
  • Caetano-Anolles, Kelsey (Department of Animal Sciences, University of Illinois) ;
  • Jeong, Jin Young (Division of Animal Products R&D, National Institute of Animal Science) ;
  • Park, Sungkwon (Animal Nutritional & Physiology Team, National Institute of Animal Science) ;
  • Oh, Young Kyun (Animal Nutritional & Physiology Team, National Institute of Animal Science) ;
  • Cho, Seoae (CHO&KIM genomics) ;
  • Kim, Heebal (Interdisciplinary Program in Bioinformatics, Seoul National University)
  • Received : 2015.06.18
  • Accepted : 2015.10.25
  • Published : 2016.03.01

Abstract

Although the chemical, physical, and nutritional properties of bovine milk have been extensively studied, only a few studies have attempted to characterize milk-synthesizing genes using RNA-seq data. RNA-seq data was collected from 21 Holstein samples, along with group information about milk production ability; milk yield; and protein, fat, and solid contents. Meta-analysis was employed in order to generally characterize genes related to milk production. In addition, we attempted to investigate the relationship between milk related traits, parity, and lactation period. We observed that milk fat is highly correlated with lactation period; this result indicates that this effect should be considered in the model in order to accurately detect milk production related genes. By employing our developed model, 271 genes were significantly (false discovery rate [FDR] adjusted p-value<0.1) detected as milk production related differentially expressed genes. Of these genes, five (albumin, nitric oxide synthase 3, RNA-binding region (RNP1, RRM) containing 3, secreted and transmembrane 1, and serine palmitoyltransferase, small subunit B) were technically validated using quantitative real-time polymerase chain reaction (qRT-PCR) in order to check the accuracy of RNA-seq analysis. Finally, 83 gene ontology biological processes including several blood vessel and mammary gland development related terms, were significantly detected using DAVID gene-set enrichment analysis. From these results, we observed that detected milk production related genes are highly enriched in the circulation system process and mammary gland related biological functions. In addition, we observed that detected genes including caveolin 1, mammary serum amyloid A3.2, lingual antimicrobial peptide, cathelicidin 4 (CATHL4), cathelicidin 6 (CATHL6) have been reported in other species as milk production related gene. For this reason, we concluded that our detected 271 genes would be strong candidates for determining milk production.

Keywords

References

  1. Accorsi, P. A., B. Pacioni, C. Pezzi, M. Forni, D. J. Flint, and E. Seren. 2002. Role of prolactin, growth hormone and insulinlike growth factor 1 in mammary gland involution in the dairy cow. J. Dairy Sci 85:507-513. https://doi.org/10.3168/jds.S0022-0302(02)74102-7
  2. Canovas, A., G. Rincon, A. Islas-Trejo, S. Wickramasinghe, and J. F. Medrano. 2010. SNP discovery in the bovine milk transcriptome using RNA-Seq technology. Mamm. Genome 21:592-598. https://doi.org/10.1007/s00335-010-9297-z
  3. Chauhan, V. and J. Hayes. 1991. Genetic parameters for first lactation milk production and composition traits for Holsteins using multivariate restricted maximum likelihood. J Dairy Sci 74:603-610. https://doi.org/10.3168/jds.S0022-0302(91)78207-6
  4. Constantin, A. and C. Csatlos. 2010. Research on the influence of microwave treatment on milk composition. Bulletin of the Transilvania University of Brasov 3:52.
  5. Cui, X. G., Y. L. Hou, S. H. Yang, Y. Xie, S. L. Zhang, Y. Zhang, Q. Zhang, X. M. Lu, G. E. Liu, and D. X. Sun. 2014. Transcriptional profiling of mammary gland in Holstein cows with extremely different milk protein and fat percentage using RNA sequencing. BMC Genomics 15:226. https://doi.org/10.1186/1471-2164-15-226
  6. Glasser, F., A. Ferlay, and Y. Chilliard. 2008. Oilseed lipid supplements and fatty acid composition of cow milk: A metaanalysis. J. Dairy Sci. 91:4687-4703. https://doi.org/10.3168/jds.2008-0987
  7. Hennighausen, L. and G. W. Robinson. 2001. Signaling pathways in mammary gland development. Dev. Cell 1:467-475. https://doi.org/10.1016/S1534-5807(01)00064-8
  8. Hill, P. D., J. C. Aldag, and R. T. Chatterton. 1999. Effects of pumping style on milk production in mothers of non-nursing preterm infants. J. Hum. Lact. 15:209-216. https://doi.org/10.1177/089033449901500310
  9. McDonald, T. L., M. A. Larson, D. R. Mack, and A. Weber. 2001. Elevated extrahepatic expression and secretion of mammaryassociated serum amyloid A 3 (M-SAA3) into colostrum. Vet. Immunol. Immunopathol. 83:203-211. https://doi.org/10.1016/S0165-2427(01)00380-4
  10. Mensink, R. P., P. L. Zock, A. D. Kester, and M. B. Katan. 2003. Effects of dietary fatty acids and carbohydrates on the ratio of serum total to HDL cholesterol and on serum lipids and apolipoproteins: a meta-analysis of 60 controlled trials. Am. J. Clin. Nutr. 77:1146-1155. https://doi.org/10.1093/ajcn/77.5.1146
  11. Minozzi, G., J. L. Williams, A. Stella, F. Strozzi, M. Luini, M. L. Settles, J. F. Taylor, R. H. Whitlock, R. Zanella, and H. L. Neibergs. 2012. Meta-analysis of two genome-wide association studies of bovine paratuberculosis. Plos One 7:e32578. https://doi.org/10.1371/journal.pone.0032578
  12. Mizoguchi, Y., T. Hirano, T. Itoh, H. Aso, A. Takasuga, Y. Sugimoto, and T. Watanabe. 2010. Differentially expressed genes during bovine intramuscular adipocyte differentiation profiled by serial analysis of gene expression. Anim. Genet. 41:436-441.
  13. Molenaar, A. J., D. P. Harris, G. H. Rajan, M. L. Pearson, M. R. Callaghan, L. Sommer, V. C. Farr, K. E. Oden, M. C. Miles, and R. S. Petrova et al. 2009. The acute-phase protein serum amyloid A3 is expressed in the bovine mammary gland and plays a role in host defence. Biomarkers 14:26-37. https://doi.org/10.1080/13547500902730714
  14. Neale, B. M., S. E. Medland, S. Ripke, P. Asherson, B. Franke, K.-P. Lesch, S. V. Faraone, T. T. Nguyen, H. Schafer, and P. Holmans et al. 2010. Meta-analysis of genome-wide association studies of attention-deficit/hyperactivity disorder. J. Am. Acad. Child Adolesc. Psychiatry 49:884-897. https://doi.org/10.1016/j.jaac.2010.06.008
  15. Onetti, S. G. and R. R. Grummer. 2004. Response of lactating cows to three supplemental fat sources as affected by forage in the diet and stage of lactation: A meta-analysis of literature. Anim. Feed Sci. Technol. 115:65-82. https://doi.org/10.1016/j.anifeedsci.2004.02.009
  16. Park, D. S., H. Lee, P. G. Frank, B. Razani, A. V. Nguyen, A. F. Parlow, R. G. Russell, J. Hulit, R. G. Pestell, and M. P. Lisanti. 2002. Caveolin-1-deficient mice show accelerated mammary gland development during pregnancy, premature lactation, and hyperactivation of the Jak-2/STAT5a signaling cascade. Mol. Biol. Cell 13:3416-3430. https://doi.org/10.1091/mbc.02-05-0071
  17. Pepe, G., G. C. Tenore, R. Mastrocinque, P. Stusio, and P. Campiglia. 2013. Potential anticarcinogenic peptides from bovine milk. J. Amino Acids Article ID 939804.
  18. Renehan, A. G., M. Tyson, M. Egger, R. F. Heller, and M. Zwahlen. 2008. Body-mass index and incidence of cancer: a systematic review and meta-analysis of prospective observational studies. Lancet 371:569-578. https://doi.org/10.1016/S0140-6736(08)60269-X
  19. Seo, M., J. Yoon, and T. Park. 2015. GRACOMICS: software for graphical comparison of multiple results with omics data. BMC Genomics 16:256. https://doi.org/10.1186/s12864-015-1461-0
  20. Sorensen, M., J. V. Norgaard, P. K. Theil, M. Vestergaard, and K. Sejrsen. 2006. Cell turnover and activity in mammary tissue during lactation and the dry period in dairy cows. J. Dairy Sci. 89:4632-4639. https://doi.org/10.3168/jds.S0022-0302(06)72513-9
  21. Sugimoto, K., N. Ichikawa-Tomikawa, S. Satohisa, Y. Akashi, R. Kanai, T. Saito, N. Sawada, and H. Chiba. 2013. The tightjunction protein claudin-6 induces epithelial differentiation from mouse F9 and embryonic stem cells. PloS one 8:e75106. https://doi.org/10.1371/journal.pone.0075106
  22. Takasuga, A., T. Watanabe, Y. Mizoguchi, T. Hirano, N. Ihara, A. Takano, K. Yokouchi, A. Fujikawa, K. Chiba, and N. Kobayashi et al. 2007. Identification of bovine QTL for growth and carcass traits in Japanese Black cattle by replication and identical-by-descent mapping. Mamm. Genome 18:125-136. https://doi.org/10.1007/s00335-006-0096-5
  23. Tao, S., J. W. Bubolz, B. C. Do Amaral, I. M. Thompson, M. J. Hayen, S. E. Johnson, and G. E. Dahl. 2011. Effect of heat stress during the dry period on mammary gland development. J. Dairy Sci. 94:5976-5986. https://doi.org/10.3168/jds.2011-4329
  24. Tezer, M., Y. Ozluk, O. Sanli, O. Asoglu, and A. Kadioglu. 2012. Nitric oxide may mediate nipple erection. J. Androl. 33:805-810. https://doi.org/10.2164/jandrol.111.014951
  25. Thompson, S. G. and J. Higgins. 2002. How should metaregression analyses be undertaken and interpreted? Stat. Med. 21:1559-1573. https://doi.org/10.1002/sim.1187
  26. Vargas, B., A. F. Groen, M. Herrero, and J. A. Van Arendonk. 2002. Economic values for production and functional traits in Holstein cattle of Costa Rica. Livest. Prod. Sci. 75:101-116. https://doi.org/10.1016/S0301-6226(01)00305-0
  27. Wang, Z., M. Gerstein, and M. Snyder. 2009. RNA-Seq: a revolutionary tool for transcriptomics. Nat. Rev. Genet. 10:57-63. https://doi.org/10.1038/nrg2484
  28. Wickramasinghe, S., G. Rincon, A. Islas-Trejo, and J. F. Medrano. 2012. Transcriptional profiling of bovine milk using RNA sequencing. BMC Genomics 13:45. https://doi.org/10.1186/1471-2164-13-45
  29. Yarus, S., J. M. Rosen, A. M. Cole, and G. Diamond. 1996. Production of active bovine tracheal antimicrobial peptide in milk of transgenic mice. Proc. Nat. Acad. Sci. 93:14118-14121. https://doi.org/10.1073/pnas.93.24.14118
  30. Yoon, J. T., J. H. Lee, C. K. Kim, Y. C. Chung, and C.-H. Kim. 2004. Effects of milk production, season, parity and lactation period on variations of milk urea nitrogen concentration and milk components of Holstein dairy cows. Asian Australas. J. Anim. Sci. 17:479-484. https://doi.org/10.5713/ajas.2004.479

Cited by

  1. Genome-wide association studies to identify quantitative trait loci affecting milk production traits in water buffalo pp.00220302, 2017, https://doi.org/10.3168/jds.2017-13246
  2. Transcriptomic profiles of the bovine mammary gland during lactation and the dry period vol.18, pp.2, 2018, https://doi.org/10.1007/s10142-017-0580-x
  3. Transcriptional profiling of two different physiological states of the yak mammary gland using RNA sequencing vol.13, pp.7, 2016, https://doi.org/10.1371/journal.pone.0201628
  4. Identifying Hub Genes for Heat Tolerance in Water Buffalo ( Bubalus bubalis ) Using Transcriptome Data vol.10, pp.None, 2016, https://doi.org/10.3389/fgene.2019.00209
  5. Whole blood transcriptome analysis reveals footprints of cattle adaptation to sub‐arctic conditions vol.50, pp.3, 2019, https://doi.org/10.1111/age.12783
  6. Transcriptome Analysis Reveals Potential Regulatory Genes Related to Heat Tolerance in Holstein Dairy Cattle vol.11, pp.1, 2016, https://doi.org/10.3390/genes11010068
  7. Comparison of the Transcriptome of the Ovine Mammary Gland in Lactating and Non-lactating Small-Tailed Han Sheep vol.11, pp.None, 2016, https://doi.org/10.3389/fgene.2020.00472
  8. Nutrigenomic Role of Acetate and β-Hydroxybutyrate in Bovine Mammary Epithelial Cells vol.39, pp.3, 2016, https://doi.org/10.1089/dna.2019.4783
  9. Folic acid supplementation regulates milk production variables, metabolic associated genes and pathways in perinatal Holsteins vol.104, pp.2, 2016, https://doi.org/10.1111/jpn.13313
  10. Lactation Associated Genes Revealed in Holstein Dairy Cows by Weighted Gene Co-Expression Network Analysis (WGCNA) vol.11, pp.2, 2016, https://doi.org/10.3390/ani11020314
  11. Transcriptome study underling difference of milk yield during peak lactation of Kazakh horse vol.102, pp.None, 2016, https://doi.org/10.1016/j.jevs.2021.103424