DOI QR코드

DOI QR Code

Ontogenetic Expression of Lpin2 and Lpin3 Genes and Their Associations with Traits in Two Breeds of Chinese Fat-tailed Sheep

  • Jiao, Xiao-Li (College of Animal Science and Technology, Shanxi Agricultural University) ;
  • Jing, Jiong-Jie (College of Animal Science and Technology, Shanxi Agricultural University) ;
  • Qiao, Li-Ying (College of Animal Science and Technology, Shanxi Agricultural University) ;
  • Liu, Jian-Hua (College of Animal Science and Technology, Shanxi Agricultural University) ;
  • Li, Liu-An (College of Animal Science and Veterinary medicine, Tianjin Agricultural University) ;
  • Zhang, Jing (College of Animal Science and Technology, Shanxi Agricultural University) ;
  • Jia, Xia-Li (College of Animal Science and Technology, Shanxi Agricultural University) ;
  • Liu, Wen-Zhong (College of Animal Science and Technology, Shanxi Agricultural University)
  • Received : 2015.05.29
  • Accepted : 2015.09.10
  • Published : 2016.03.01

Abstract

Lipins play dual function in lipid metabolism by serving as phosphatidate phosphatase and transcriptional co-regulators of gene expression. Mammalian lipin proteins consist of lipin1, lipin2, and lipin3 and are encoded by their respective genes Lpin1, Lpin2, and Lpin3. To date, most studies are concerned with Lpin1, only a few have addressed Lpin2 and Lpin3. Ontogenetic expression of Lpin2 and Lpin3 and their associations with traits would help to explore their molecular and physiological functions in sheep. In this study, 48 animals with an equal number of males and females each for both breeds of fat-tailed sheep such as Guangling Large Tailed (GLT) and Small Tailed Han (STH) were chosen to evaluate the ontogenetic expression of Lpin2 and Lpin3 from eight different tissues and months of age by quantitative real-time polymerase chain reaction (PCR). Associations between gene expression and slaughter and tail traits were also analyzed. The results showed that Lpin2 mRNA was highly expressed in perirenal and tail fats, and was also substantially expressed in liver, kidney, reproductive organs (testis and ovary), with the lowest levels in small intestine and femoral biceps. Lpin3 mRNA was prominently expressed in liver and small intestine, and was also expressed at high levels in kidney, perirenal and tail fats as well as reproductive organs (testis and ovary), with the lowest level in femoral biceps. Global expression of Lpin2 and Lpin3 in GLT both were significantly higher than those in STH. Spatiotemporal expression showed that the highest levels of Lpin2 expression occurred at 10 months of age in two breeds of sheep, with the lowest expression at 2 months of age in STH and at 8 months of age in GLT. The greatest levels of Lpin3 expression occurred at 4 months of age in STH and at 10 months of age in GLT, with the lowest expression at 12 months of age in STH and at 8 months of age in GLT. Breed and age significantly influenced the tissue expression patterns of Lpin2 and Lpin3, respectively, and sex significantly influenced the spatiotemporal expression patterns of Lpin3. Meanwhile, Lpin2 and Lpin3 mRNA expression both showed significant correlations with slaughter and tail traits, and the associations appear to be related with the ontogenetic expression as well as the potential functions of lipin2 and lipin3 in sheep.

Keywords

References

  1. Burgdorf, C., L. Hansel, M. Heidbreder, O. Johren, F. Schutte, H. Schunkert, and T. Kurz. 2009. Suppression of cardiac phosphatidatephosphohydrolase1 activity and lipin mRNA expression in Zucker diabetic fatty rats and humans with type 2 diabetes mellitus. Biochem. Biophys. Res. Commun. 390: 165-170. https://doi.org/10.1016/j.bbrc.2009.09.108
  2. Chen, Z., M. C. Gropler, M. S. Mitra, and B. N. Finck. 2012. Complex interplay between the lipin1 and the hepatocyte nuclear factor 4a (HNF4a) pathways to regulate liver lipid metabolism. PloS One 7:e51320. https://doi.org/10.1371/journal.pone.0051320
  3. Donkor, J., M. Sariahmetoglu, J. Dewald, D. N. Brindley, and K. Reue. 2007. Three mammalian lipins act as phosphatidate phosphatases with distinct tissue expression patterns. J. Biol. Chem. 282:3450-3457.
  4. Donkor, J., P. Zhang, S. Wong, L. O'Loughlin, J. Dewald, B. P. Kok, D. N. Brindley, and K. Reue. 2009. A conserved serine residue is required for the phosphatidate phosphatase activity but not the transcriptional coactivator functions of lipin-1 and lipin-2. J. Biol. Chem. 284:29968-29978. https://doi.org/10.1074/jbc.M109.023663
  5. Dwyer, J. R., J. Donkor, P. Zhang, L. S. Csaki, L. Vergnes, J. M. Lee, J. Dewald, D. N. Brindley, E. Atti, S. Tetradis, Y. Yoshinaga, P. J. De Jong, L. G. Fong, S. G. Young, and K. Reue. 2012. Mouse lipin-1 and lipin-2 cooperate to maintain glycerolipid homeostasis in liver and aging cerebellum. Proc. Natl. Acad. Sci. USA. 109:E2486-2495. https://doi.org/10.1073/pnas.1205221109
  6. Golden, A., J. Liu, and O. Cohen-Fix. 2009. Inactivation of the C. Elegans lipin homolog leads to ER disorganization and to defects in the breakdown and reassembly of the nuclear envelope. J. Cell Sci. 122:1970-1978. https://doi.org/10.1242/jcs.044743
  7. Gonzalez, C. R., M. G. Novelle, J. E. Caminos, M. J. Vazquez, R. M. Luque, M. Lopez, R. Nogueiras, and C. Dieguez. 2012. Regulation of lipin1 by nutritional status, adiponectin, sex and pituitary function in rat white adipose tissue. Physiol. Behav. 105:777-783. https://doi.org/10.1016/j.physbeh.2011.10.016
  8. Gorjanacz, M. and I. W. Mattaj. 2009. Lipin is required for efficient breakdown of the nuclear envelope in Caenorhabditis elegans. J. Cell Sci. 122:1963-1969. https://doi.org/10.1242/jcs.044750
  9. Grimsey, N., G. S. Han, L. O'Hara, J. J. Rochford, G. M. Carman, and S. Siniossoglou. 2008. Temporal and spatial regulation of the phosphatidate phosphatases lipin 1 and 2. J. Biol. Chem. 283:29166-29174. https://doi.org/10.1074/jbc.M804278200
  10. Gropler, M. C., T. E. Harris, A. M. Hall, N. E. Wolins, R. W. Gross, X. Han, Z. Chen, and B. N. Finck. 2009. Lipin 2 is a liverenriched phosphatidate phosphohydrolase enzyme that is dynamically regulated by fasting and obesity in mice. J. Biol. Chem. 284:6763-6772. https://doi.org/10.1074/jbc.M807882200
  11. Han, G. S., W. I. Wu, and G. M. Carman. 2006. The Saccharomyces cerevisiae Lipin homolog is a $Mg^{2+}$-dependent phosphatidate phosphatase enzyme. J. Biol. Chem. 281:9210-9218. https://doi.org/10.1074/jbc.M600425200
  12. Harris, T. E. and B. N.Finck. 2011. Dual function lipin proteins and glycerolipid metabolism. Trends Endocrinol. Metab. 22:226-233. https://doi.org/10.1016/j.tem.2011.02.006
  13. He, X., X. Xu, and B. Liu. 2009. Molecular characterization, chromosomal localization and association analysis with backfat thickness of porcine LPIN2 and LPIN3. Mol. Biol. Rep. 36: 1819-1824. https://doi.org/10.1007/s11033-008-9385-2
  14. Herlin, T., B. Fiirgaard, M. Bjerre, G. Kerndrup, H. Hasle, X. Bing, and P. J. Ferguson. 2013. Efficacy of anti-IL-1 treatment in Majeed syndrome. Ann. Rheum. Dis. 72:410-413. https://doi.org/10.1136/annrheumdis-2012-201818
  15. Huang, H., Q. Gao, X. Peng, S. Y. Choi, K. Sarma, H. Ren, A. J. Morris, and M. A. Frohman. 2011. piRNA-associated germline nuage formation and spermatogenesis require MitoPLD profusogenic mitochondrial-surface lipid signaling. Dev. Cell 20:376-387. https://doi.org/10.1016/j.devcel.2011.01.004
  16. Khalil, B. M., M. Sundaram, H. Y. Zhang, P. H. Links, J. F. Raven, B. Manmontri, M. Sariahmetoglu, K. Tran, K. Reue, D. N. Brindley, and Z. Yao. 2009. The level and compartmentalization of phosphatidate phosphatase-1 (lipin-1) control the assembly and secretion of hepatic VLDL. J. Lipid Res. 50:47-58. https://doi.org/10.1194/jlr.M800204-JLR200
  17. Livak, K. J. and T. D. Schmittgen. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta DeltaC(T)). Methods 25:402-408. https://doi.org/10.1006/meth.2001.1262
  18. Michot, C., L. Hubert, M. Brivet, L. De Meirleir, V. Valayannopoulos, W. Muller-Felber, R. Venkateswaran, H. Ogier, I. Desguerre, C. Altuzarra, E. Thompson, M. Smitka, A. Huebner, M. Husson, R. Horvath, P. Chinnery, F. M. Vaz, A. Munnich, O. Elpeleg, A. Delahodde, Y. deKeyzer, and P. deLonlay. 2010. LPIN1 gene mutations: a major cause of severe rhabdomyolysis in early childhood. Hum. Mutat. 31:E1564-1573. https://doi.org/10.1002/humu.21282
  19. Mitra, M. S., Z. Chen, H. Ren, T. E. Harris, K. T. Chambers, A. M. Hall, K. Nadra, S. Klein, R. Chrast, X. Su, A. J. Morris, and B. N. Finck. 2013. Mice with an adipocyte-specific lipin 1 separation-of-function allele reveal unexpected roles for phosphatidic acid in metabolic regulation. Proc. Natl. Acad. Sci. USA. 110:642-647. https://doi.org/10.1073/pnas.1213493110
  20. Peterfy, M., T. E. Harris, N. Fujita, and K. Reue. 2010. Insulinstimulated interaction with 14-3-3 promotes cytoplasmic localization of lipin-1 in adipocytes. J. Biol. Chem. 285:3857-3864. https://doi.org/10.1074/jbc.M109.072488
  21. Peterfy, M., J. Phan, and K. Reue. 2005. Alternatively spliced lipin isoforms exhibit distinct expression pattern, subcellular localization, and role in adipogenesis. J. Biol. Chem. 280: 32883-32889. https://doi.org/10.1074/jbc.M503885200
  22. Peterfy, M., J. Phan, P. Xu, and K. Reue. 2001. Lipodystrophy in the fld mouse results from mutation of a new gene encoding a nuclear protein, lipin. Nat. Genet. 27:121-124. https://doi.org/10.1038/83685
  23. Phan, J., M. Peterfy, and K. Reue. 2004. Lipin expression preceding peroxisome proliferator-activated receptor-gamma is critical for adipogenesis in vivo and in vitro. J. Biol. Chem. 279:29558-29564. https://doi.org/10.1074/jbc.M403506200
  24. Phan, J. and K. Reue. 2005. Lipin, a lipodystrophy and obesity gene. Cell Metab. 1:73-83. https://doi.org/10.1016/j.cmet.2004.12.002
  25. Reue, K., P. Xu, X. P. Wang, and B. G. Slavin. 2000. Adipose tissue deficiency, glucose intolerance, and increased atherosclerosis result from mutation in the mouse fatty liver dystrophy (fld) gene. J. Lipid Res. 41:1067-1076.
  26. Sanderson, L. M., T. Degenhardt, A. Koppen, E. Kalkhoven, B. Desvergne, M. Muller, and S. Kersten. 2009. Peroxisome proliferator-activated receptor beta/delta (PPARbeta/delta) but not PPARalpha serves as a plasma free fatty acid sensor in liver. Mol. Cell Biol. 29:6257-6267. https://doi.org/10.1128/MCB.00370-09
  27. Sasser, T., Q. S. Qiu, S. Karunakaran, M. Padolina, A. Reyes, B. Flood, S. Smith, C. Gonzales, and R. A. Fratti. 2012. Yeast lipin 1 orthologue pah1p regulates vacuole homeostasis and membrane fusion. J. Biol. Chem. 287:2221-2236. https://doi.org/10.1074/jbc.M111.317420
  28. Scott, R. A., V. Lagou, R. P. Welch, and E. Wheeler. 2012. Largescale association analyses identify new loci influencing glycemic traits and provide insight into the underlying biological pathways. Nat. Genet. 44:991-1005. https://doi.org/10.1038/ng.2385
  29. Yuan, Y. N., W. Z. Liu, J. H. Liu, L. Y. Qiao, and J. L.Wu. 2012. Cloning and ontogenetic expression of the uncoupling protein 1 gene UCP1 in sheep. J. Appl. Genet. 53:203-212. https://doi.org/10.1007/s13353-012-0086-0
  30. Zhang, C., R. Wang, W. Chen, X. Kang, Y. Huang, R. Walker, and J. Mo. 2014. Gene structure and spatio-temporal expression of chicken LPIN2. Mol. Biol. Rep. 41:4081-4091. https://doi.org/10.1007/s11033-014-3278-3

Cited by

  1. Transcriptome analysis of adipose tissues from two fat-tailed sheep breeds reveals key genes involved in fat deposition vol.19, pp.1, 2018, https://doi.org/10.1186/s12864-018-4747-1
  2. Assessment of Autozygosity Derived From Runs of Homozygosity in Jinhua Pigs Disclosed by Sequencing Data vol.10, pp.None, 2019, https://doi.org/10.3389/fgene.2019.00274
  3. mRNA expression of genes related to fat deposition during in vitro ovine adipogenesis vol.99, pp.4, 2016, https://doi.org/10.1139/cjas-2018-0107