DOI QR코드

DOI QR Code

Changes of C-Reactive Protein and Erythrocyte Sedimentation Rate Level from Infection and Non-Infection after the Artificial Joint Surgery

인공관절 수술 후 감염과 비 감염에 따른 C-반응성단백과 적혈구침강속도의 변화 추이

  • Kim, Min-Ju (Department of Biomedical Laboratory Science, Kyungwoon University) ;
  • Kim, Hye-Jeong (Department of Biomedical Laboratory Science, Kyungwoon University)
  • 김민주 (경운대학교 임상병리학과) ;
  • 김혜정 (경운대학교 임상병리학과)
  • Received : 2016.10.19
  • Accepted : 2016.11.22
  • Published : 2016.12.31

Abstract

This study aimed to analyze the changes of C-reactive protein (CRP) and erythrocyte sedimentation rate (ESR) measured in acute infection within four weeks post artificial joint surgery to predict potential infection in early stages, provide rapid treatment, and prevent the abuse of antibiotics. This study included 50 patients with acute infection and 50 patients without any symptoms of infection, among patients who received artificial joint replacement surgery on the lower limbs in a four-week period. CRP was the highest two-to-three days after surgery. with $5.77{\pm}3.69$ and $5.17{\pm}3.48$, respectively, in those with infection and without infection. Thereafter, the value rapidly reduced in those without infection. However, it increased again to $3.16{\pm}2.87$ in the group with infection according to the bimodal curve (p<0.001). ESR was the highest two-to-three days after surgery, with $58.8{\pm}24.63$ and $44.08{\pm}21.48$, respectively. Thereafter, the value slowly reduced in those without infection. However, it was increased again to $47.62{\pm}26.26$ in those with infection according to the bimodal curve p<0.001). As this study shows, if there is an increasing trend for CRP and ESR after artificial joint replacement surgery, it may be possible to question whether patients are acutely infected post surgery. In particular, this result is expected and regarded as a useful factor for diagnosing infection due to the high level of sensitivity and uniqueness for CRP.

인공 관절 치환술 후 감염의 조기 진단에 도움이 되고자, 인공관절 술 후 4주 이내 발생하였던 급성 감염 환자들과 비 감염 환자들을 대상으로 술 후 기간별 C-반응성 단백질 검사와 적혈구 침강속도를 연속적으로 측정하여 비교하고 그 변화 양상에 대하여 분석하고자 하였다. 하지 인공관절 치환술을 시행 받은 환자 중 4주 이내에 급성 감염이 발생한 환자 50예와 어떠한 감염 징후도 없었던 환자 50예를 대상으로 하였다. C-반응성단백 및 적혈구침강속도의 측정은 수술 전, 수술 직후, 수술 후 2~3일, 수술 후 4~7일, 수술 후 8~14일, 수술 후 15~21일, 수술 후 22~31일 사이에 시행하였다. 연구결과 C-반응성단백은 감염과 비 감염 군에서 술 후 2~3일에 각각 $5.77{\pm}3.69$$5.17{\pm}3.48$로 가장 높았고, 이후 비 감염 군에서는 급격히 감소하여 술 후 15~21일에 $0.72{\pm}1.31$로 정상 범위를 보였지만, 감염 군에서는 $3.16{\pm}2.87$로 재상승하는 bimodal curve를 보였으며, 두 군 간의 유의한 차이를 나타내었다(p<0.001). 적혈구침강속도는 감염과 비 감염 군에서 술 후 2~3일에 각각 $58.8{\pm}24.63$$44.08{\pm}21.48$로 급격히 증가하고(p<0.01). 이후 비 감염 군에서는 서서히 감소하여 술 후 15~21일에 $28.98{\pm}18.58$로 정상 범위를 보였지만, 감염 군에서는 $47.62{\pm}26.26$으로 재상승하는 bimodal curve를 보였으며, 두 군 간의 유의한 차이를 나타내었다(p<0.001). 본 연구결과 인공관절 치환술 후 C-반응성단백 및 적혈구침강속도가 재상승하는 양상을 보일 경우 급성 술 후 감염을 의심할 수 있으며, 특히 C-반응성단백은 높은 민감도와 특이도를 나타내므로 감염을 진단하는 인자로 유용하다 할 수 있다. 이를 통해 감염 의심 환자를 조기에 예측하여 신속한 처치와 항생제 남용을 방지함으로써 전신적인 합병증으로 확대되는 것을 최소화할 수 있을 것으로 사료된다.

Keywords

References

  1. Galat DD, McGovern SC, Larson DR, Harrington JR, Hanssen AD, Clarke HD. Surgical treatment of early wound complications following primary total knee arthroplasty. J Bone Joint Surg Am. 2009;91:48-54. https://doi.org/10.2106/JBJS.G.01371
  2. Saleh K, Olson M, Resig S, Bershadsky B, Kuskowskid M, Gioe T, et al. Predictors of wound infection in hip and knee joint replacement: results from a 20 year surveillance program. J Orthop Res. 2002;20:506-515. https://doi.org/10.1016/S0736-0266(01)00153-X
  3. Ugras AA, Kural C, Kural A, Demirez F, Koldas M, Cetinus E. Which is more important after total knee arthroplasty: local inflammatory response or systemic inflammatory response? Knee. 2011;18:113-116. https://doi.org/10.1016/j.knee.2010.03.004
  4. Bilgen O, Atici T, Durak K, Karaeminogullari, Bilgen MS. C-reactive protein values and erythrocyte sedimentation rates after total hip and total knee arthroplasty. J Int Med Res. 2001;29:7-12. https://doi.org/10.1177/147323000102900102
  5. Koo KH, Yang JW, Cho SH, Song HR, Park HB, Ha YC, et al. Impregnation of vancomycin, gentamicin, and cefotaxime in a cement spacer for two stage cementless reconstruction in infected total hip arthroplasty. J Arthroplasty. 2001;16:882-892. https://doi.org/10.1054/arth.2001.24444
  6. Estes CS, Beauchamp CP, Clarke HD, Spangehl MJ. A two stage retention debridement protocol for acute periprosthetic joint infections. Clin Orthop Relat Res. 2010;468:2029-2038. https://doi.org/10.1007/s11999-010-1293-9
  7. Van Kleunen JP, Knox D, Garino JP, Lee GC. Irrigation and debridement and prosthesis retention for treating acute periprosthetic infections. Clin Orthop Relat Res. 2010;468:2024-2028. https://doi.org/10.1007/s11999-010-1291-y
  8. Chiu FY, Chen CM. Surgical debridement and parenteral antibiotics in infected revision total knee arthroplasty. Clin Orthop Relat Res. 2007;461:130-135.
  9. Shen H, Zhang N, Zhang X, Ji W. C-reactive protein levels after 4 types of arthroplasty. Acta Orthop. 2009;80:330-333. https://doi.org/10.3109/17453670903066596
  10. Dupont C, Rodenbach J, Flachaire E. The value of C-reactive protein for postoperative monitoring of lower limb arthroplasty. Ann Readapt Med Phys. 2008;51:348-357. https://doi.org/10.1016/j.annrmp.2008.01.014
  11. Suh YS, Choi HS, Nho JH, Won SH, Choi JW, Lee JC, et al. Prediction of early postoperative infection after arthroplasty using the C-reactive protein level. J Korean Orthop Assoc. 2012;47;133-139. https://doi.org/10.4055/jkoa.2012.47.2.133
  12. Kim YH, Park H. Study on the anti-Inflammatory activity and mechanism of medicinal plants used in the treatment of arthritis. Korean J Clin Lab Sci. 2016;48:176-182. https://doi.org/10.15324/kjcls.2016.48.3.176
  13. Berbari E, Mabry T, Tsaras G, Spangehl M, Erwin PJ, Murad MH, et al. Inflammatory blood laboratory levels as markers of prosthetic joint infection: a systematic review and meta-analysis. J Bone Joint Surg Am. 2010;92:2102-2109. https://doi.org/10.2106/JBJS.I.01199
  14. Piper KE, Jacobson MJ, Cofield RH, Sperling TW, Sanchez-Sotelo J, Osmon DR, et al. Microbiologic diagnosis of prosthetic shoulder infection by use of implant sonication. J Clin Microbiol. 2009;47:1878-1884. https://doi.org/10.1128/JCM.01686-08
  15. Park SK. Gender difference in the association of metabolic syndrome with hs-CRP concentration of blood. Korean J Clin Lab Sci. 2012;44:86-96.
  16. Fischer CL, Gill CW, Forrester MG, Nakamura R. Quantitation of acute phase proteins postoperatively. Value in detection and monitoring of complications. Am J Clin Pathol, 1976;66:840-846. https://doi.org/10.1093/ajcp/66.5.840
  17. Park KK, Kim TK, Chang CB, Yoon SW, Park KU. Normative temporal values of CRP and ESR in unilateral and staged bilateral TKA. Clin Orthop Relat Res. 2008;466:179-188. https://doi.org/10.1007/s11999-007-0001-x
  18. Vilchez F, Martinez-Pastor JC, Garcia-Ramiro S, Bori1 G, Macule F, Sierra J, et al. Outcome and predictors of treatment failure in early post-surgical prosthetic joint infections due to Staphylococcus aureus treated with debridement. Clin Microbiol Infect. 2011;17:439-444. https://doi.org/10.1111/j.1469-0691.2010.03244.x
  19. Tsukayama DT, Estrada R, Gustilo RB. Infection after total hip arthroplasty. A study of the treatment of one hundred and six infections. J Bone Joint Surg Am. 1996;78:512-523. https://doi.org/10.2106/00004623-199604000-00005
  20. Horan TC, Gaynes RP, Martone WJ, Jarvis WR, Emori TG. CDC definitions of nosocomial surgical site infections, 1992: a modification of CDC definitions of surgical wound infections. Am J Infect Control. 1992;20:271-274. https://doi.org/10.1016/S0196-6553(05)80201-9