DOI QR코드

DOI QR Code

An Integrative Approach to Precision Cancer Medicine Using Patient-Derived Xenografts

  • Cho, Sung-Yup (Department of Life Science, Ewha Womans University) ;
  • Kang, Wonyoung (Department of Life Science, Ewha Womans University) ;
  • Han, Jee Yun (Department of Life Science, Ewha Womans University) ;
  • Min, Seoyeon (Department of Life Science, Ewha Womans University) ;
  • Kang, Jinjoo (Department of Life Science, Ewha Womans University) ;
  • Lee, Ahra (Department of Life Science, Ewha Womans University) ;
  • Kwon, Jee Young (Department of Life Science, Ewha Womans University) ;
  • Lee, Charles (Department of Life Science, Ewha Womans University) ;
  • Park, Hansoo (Department of Life Science, Ewha Womans University)
  • 투고 : 2015.12.17
  • 심사 : 2015.12.23
  • 발행 : 2016.02.29

초록

Cancer is a heterogeneous disease caused by diverse genomic alterations in oncogenes and tumor suppressor genes. Despite recent advances in high-throughput sequencing technologies and development of targeted therapies, novel cancer drug development is limited due to the high attrition rate from clinical studies. Patient-derived xenografts (PDX), which are established by the transfer of patient tumors into immunodeficient mice, serve as a platform for co-clinical trials by enabling the integration of clinical data, genomic profiles, and drug responsiveness data to determine precisely targeted therapies. PDX models retain many of the key characteristics of patients' tumors including histology, genomic signature, cellular heterogeneity, and drug responsiveness. These models can also be applied to the development of biomarkers for drug responsiveness and personalized drug selection. This review summarizes our current knowledge of this field, including methodologic aspects, applications in drug development, challenges and limitations, and utilization for precision cancer medicine.

키워드

참고문헌

  1. Agliano, A., Martin-Padura, I., Mancuso, P., Marighetti, P., Rabascio, C., Pruneri, G., Shultz, L.D., and Bertolini, F. (2008). Human acute leukemia cells injected in NOD/LtSz-scid/IL-$2R\gamma$ null mice generate a faster and more efficient disease compared to other NOD/scid-related strains. Int. J. Cancer 123, 2222-2227. https://doi.org/10.1002/ijc.23772
  2. Aparicio, S., Hidalgo, M., and Kung, A.L. (2015). Examining the utility of patient-derived xenograft mouse models. Nat. Rev. Cancer 15, 311-316. https://doi.org/10.1038/nrc3944
  3. Aytes, A., Mollevi, D.G., Martinez-Iniesta, M., Nadal, M., Vidal, A., Morales, A., Salazar, R., Capella, G., and Villanueva, A. (2012). Stromal interaction molecule 2 (STIM2) is frequently overexpressed in colorectal tumors and confers a tumor cell growth suppressor phenotype. Mol. Carcinog. 51, 746-753. https://doi.org/10.1002/mc.20843
  4. Bell, D., Berchuck, A., Birrer, M., Chien, J., Cramer, D.W., Dao, F., Dhir, R., DiSaia, P., Gabra, H., Glenn, P., et al. (2011). Integrated genomic analyses of ovarian carcinoma. Nature 474, 609-615. https://doi.org/10.1038/nature10166
  5. Bertolini, G., Roz, L., Perego, P., Tortoreto, M., Fontanella, E., Gatti, L., Pratesi, G., Fabbri, A., Andriani, F., Tinelli, S., et al. (2009). Highly tumorigenic lung cancer CD133(+) cells display stem-like features and are spared by cisplatin treatment. Proc. Natl. Acad. Sci. USA 106, 16281-16286. https://doi.org/10.1073/pnas.0905653106
  6. Bertotti, A., Migliardi, G., Galimi, F., Sassi, F., Torti, D., Isella, C., Cora, D., Di Nicolantonio, F., Buscarino, M., Petti, C., et al. (2011). A molecularly annotated platform of patient-derived xenografts ("xenopatients") identifies HER2 as an effective therapeutic target in cetuximab-resistant colorectal cancer. Cancer Discov. 1, 508-523. https://doi.org/10.1158/2159-8290.CD-11-0109
  7. Chen, K., Ahmed, S., Adeyi, O., Dick, J.E., and Ghanekar, A. (2012). Human solid tumor xenografts in immunodeficient mice are vulnerable to lymphomagenesis associated with Epstein-Barr virus. PLoS One 7, e39294. https://doi.org/10.1371/journal.pone.0039294
  8. Choi, S.Y.C., Lin, D., Gout, P.W., Collins, C.C., Xu, Y., and Wang, Y.Z. (2014). Lessons from patient-derived xenografts for better in vitro modeling of human cancer. Adv. Drug Deliver. Rev. 79-80, 222-237. https://doi.org/10.1016/j.addr.2014.09.009
  9. Das Thakur, M., Salangsang, F., Landman, A.S., Sellers, W.R., Pryer, N.K., Levesque, M.P., Dummer, R., McMahon, M., and Stuart, D.D. (2013). Modelling vemurafenib resistance in melanoma reveals a strategy to forestall drug resistance. Nature 494, 251-255. https://doi.org/10.1038/nature11814
  10. de Groot, J.F., Fuller, G., Kumar, A.J., Piao, Y., Eterovic, K., Ji, Y.J., and Conrad, C.A. (2010). Tumor invasion after treatment of glioblastoma with bevacizumab: radiographic and pathologic correlation in humans and mice. Neuro. Oncol. 12, 233-242. https://doi.org/10.1093/neuonc/nop027
  11. Delitto, D., Pham, K., Vlada, A.C., Sarosi, G.A., Thomas, R.M., Behrns, K.E., Liu, C., Hughes, S.J., Wallet, S.M., and Trevino, J.G. (2015). Patient-derived xenograft models for pancreatic adenocarcinoma demonstrate retention of tumor morphology through incorporation of murine stromal elements. Am. J. Pathol. 185, 1297-1303. https://doi.org/10.1016/j.ajpath.2015.01.016
  12. DeRose, Y.S., Wang, G.Y., Lin, Y.C., Bernard, P.S., Buys, S.S., Ebbert, M.T.W., Factor, R., Matsen, C., Milash, B.A., Nelson, E., et al. (2011). Tumor grafts derived from women with breast cancer authentically reflect tumor pathology, growth, metastasis and disease outcomes. Nat. Med. 17, 1514-1520 https://doi.org/10.1038/nm.2454
  13. DiMasi, J.A., Reichert, J.M., Feldman, L., and Malins, A. (2013). Clinical approval success rates for investigational cancer drugs. Clin. Pharmacol. Ther. 94, 329-335. https://doi.org/10.1038/clpt.2013.117
  14. Ding, L., Ellis, M.J., Li, S.Q., Larson, D.E., Chen, K., Wallis, J., Harris, C.C., McLellan, M.D., Fulton, R.S., Fulton, L.L., et al. (2010). Genome remodelling in a basal-like breast cancer metastasis and xenograft. Nature 464, 999-1005. https://doi.org/10.1038/nature08989
  15. Dong, X., Guan, J., English, J.C., Flint, J., Yee, J., Evans, K., Murray, N., Macaulay, C., Ng, R.T., Gout, P.W., et al. (2010). Patientderived first generation xenografts of non-small cell lung cancers: promising tools for predicting drug responses for personalized chemotherapy. Clin. Cancer Res. 16, 1442-1451. https://doi.org/10.1158/1078-0432.CCR-09-2878
  16. Dowst, H., Pew, B., Watkins, C., McOwiti, A., Barney, J., Qu, S., Becnel, L. B. (2015). Acquire: an open-source comprehensive cancer biobanking system. Bioinformatics 31, 1655-1662. https://doi.org/10.1093/bioinformatics/btv012
  17. Eirew, P., Steif, A., Khattra, J., Ha, G., Yap, D., Farahani, H., Gelmon, K., Chia, S., Mar, C., Wan, A., et al. (2015). Dynamics of genomic clones in breast cancer patient xenografts at single-cell resolution. Nature 518, 422-426. https://doi.org/10.1038/nature13952
  18. Fernandez de Sanmamamed, M., Lopez Rodriguez, I., Schalper, K.A., Onate, C., Azpilikueta, A., Rodriguez-Ruiz, M.E., Morales- Kastresana, A., Labiano, S., Perez-Gracia, J.L., Martin-Algarra, S., et al. (2015). Nivolumab and urelumab enhance antitumor activity of human T lymphocytes engrafted in Rag2-/-IL2R$\gamma$null immunodeficient mice. Cancer Res. 75, 3466-3478. https://doi.org/10.1158/0008-5472.CAN-14-3510
  19. Fichtner, I., Rolff, J., Soong, R., Hoffmann, J., Hammer, S., Sommer, A., Becker, M., and Merk, J. (2008). Establishment of patientderived non-small cell lung cancer xenografts as models for the identification of predictive biomarkers. Clin. Cancer Res. 14, 6456-6468. https://doi.org/10.1158/1078-0432.CCR-08-0138
  20. Gao, D., and Chen, Y. (2015). Organoid development in cancer genome discovery. Curr. Opin. Genet. Dev. 30, 42-48. https://doi.org/10.1016/j.gde.2015.02.007
  21. Gao, H., Korn, J.M., Ferretti, S., Monahan, J.E., Wang, Y., Singh, M., Zhang, C., Schnell, C., Yang, G., Zhang, Y., et al. (2015). Highthroughput screening using patient-derived tumor xenografts to predict clinical trial drug response. Nat. Med. 21, 1318-1325. https://doi.org/10.1038/nm.3954
  22. Garraway, L.A., Verweij, J., and Ballman, K.V. (2013). Precision oncology: an overview. J. Clin. Oncol. 31, 1803-1805. https://doi.org/10.1200/JCO.2013.49.4799
  23. Garrido-Laguna, I., Uson, M., Rajeshkumar, N.V., Tan, A.C., de Oliveira, E., Karikari, C., Villaroel, M.C., Salomon, A., Taylor, G., Sharma, R., et al. (2011). Tumor engraftment in nude mice and enrichment in stroma-related gene pathways predict poor survival and resistance to gemcitabine in patients with pancreatic cancer. Clin. Cancer Res. 17, 5793-5800. https://doi.org/10.1158/1078-0432.CCR-11-0341
  24. Girotti, M.R., Lopes, F., Preece, N., Niculescu-Duvaz, D., Zambon, A., Davies, L., Whittaker, S., Saturno, G., Viros, A., Pedersen, M., et al. (2015). Paradox-breaking RAF inhibitors that also target SRC are effective in drug-resistant BRAF mutant melanoma. Cancer Cell 27, 85-96. https://doi.org/10.1016/j.ccell.2014.11.006
  25. Hidalgo, M., Bruckheimer, E., Rajeshkumar, N.V., Garrido-Laguna, I., De Oliveira, E., Rubio-Viqueira, B., Strawn, S., Wick, M.J., Martell, J., and Sidransky, D. (2011). A pilot clinical study of treatment guided by personalized tumorgrafts in patients with advanced cancer. Mol. Cancer Ther. 10, 1311-1316. https://doi.org/10.1158/1535-7163.MCT-11-0233
  26. Hidalgo, M., Amant, F., Biankin, A.V., Budinska, E., Byrne, A.T., Caldas, C., Clarke, R.B., de Jong, S., Jonkers, J., Maelandsmo, G.M., et al. (2014). Patient-derived xenograft models: an emerging platform for translational cancer research. Cancer Discov. 4, 998-1013. https://doi.org/10.1158/2159-8290.CD-14-0001
  27. Hoffman, R.M. (2015). Patient-derived orthotopic xenografts: better mimic of metastasis than subcutaneous xenografts. Nat. Rev. Cancer 15, 451-452. https://doi.org/10.1038/nrc3972
  28. John, T., Yanagawa, N., Kohler, D., Craddock, K.J., Bandarchi- Chamkhaleh, B., Pintilie, M., Sykes, J., To, C., Li, M., Panchal, D., et al. (2012). Characterization of lymphomas developing in immunodeficient mice implanted with primary human non-small cell lung cancer. J. Thorac. Oncol. 7, 1101-1108. https://doi.org/10.1097/JTO.0b013e3182519d4d
  29. Johnson, J.I., Decker, S., Zaharevitz, D., Rubinstein, L.V., Venditti, J., Schepartz, S., Kalyandrug, S., Christian, M., Arbuck, S., Hollingshead, M., et al. (2001). Relationships between drug activity in NCI preclinical in vitro and in vivo models and early clinical trials. Br. J. Cancer 84, 1424-1431. https://doi.org/10.1054/bjoc.2001.1796
  30. Joo, K.M., Kim, J., Jin, J., Kim, M., Seol, H.J., Muradov, J., Yang, H., Choi, Y.L., Park, W.Y., Kong, D.S., et al. (2013). Patient-specific orthotopic glioblastoma xenograft models recapitulate the histopathology and biology of human glioblastomas in situ. Cell Rep. 3, 260-273. https://doi.org/10.1016/j.celrep.2012.12.013
  31. Julien, S., Merino-Trigo, A., Lacroix, L., Pocard, M., Goere, D., Mariani, P., Landron, S., Bigot, L., Nemati, F., Dartigues, P., et al. (2012). Characterization of a large panel of patient-derived tumor xenografts representing the clinical heterogeneity of human colorectal cancer. Clin. Cancer Res. 18, 5314-5328. https://doi.org/10.1158/1078-0432.CCR-12-0372
  32. Kimple, R.J., Harari, P.M., Torres, A.D., Yang, R.Z., Soriano, B.J., Yu, M., Armstrong, E.A., Blitzer, G.C., Smith, M.A., Lorenz, L.D., et al. (2013). Development and characterization of HPV-positive and HPV-negative head and neck squamous cell carcinoma tumorgrafts. Clin. Cancer Res. 19, 855-864. https://doi.org/10.1158/1078-0432.CCR-12-2746
  33. Keysar, S.B., Astling, D.P., Anderson, R.T., Vogler, B.W., Bowles, D.W., Morton, J.J., Paylor, J.J., Glogowska, M.J., Le, P.N., Eagles- Soukup, J.R., et al. (2013). A patient tumor transplant model of squamous cell cancer identifies PI3K inhibitors as candidate therapeutics in defined molecular bins. Mol. Oncol. 7, 776- 790. https://doi.org/10.1016/j.molonc.2013.03.004
  34. Koboldt, D.C., Fulton, R.S., McLellan, M.D., Schmidt, H., Kalicki- Veizer, J., McMichael, J.F., Fulton, L.L., Dooling, D.J., Ding, L., Mardis, E.R., et al. (2012). Comprehensive molecular portraits of human breast tumours. Nature 490, 61-70. https://doi.org/10.1038/nature11412
  35. Kopetz, S., Lemos, R., and Powis, G. (2012). The promise of patient- derived xenografts: the best laid plans of mice and men. Clin. Cancer Res. 18, 5160-5162. https://doi.org/10.1158/1078-0432.CCR-12-2408
  36. Kung, A.L. (2007). Practices and pitfalls of mouse cancer models in drug discovery. Adv. Cancer Res. 96, 191-212.
  37. Lai, A., Tran, A., Nghiemphu, P.L., Pope, W.B., Solis, O.E., Selch, M., Filka, E., Yong, W.H., Mischel, P.S., Liau, L.M., et al. (2011). Phase II study of bevacizumab plus temozolomide during and after radiation therapy for patients with newly diagnosed glioblastoma multiforme. J. Clin. Oncol. 29, 142-148. https://doi.org/10.1200/JCO.2010.30.2729
  38. Landis, M.D., Lehmann, B.D., Pietenpol, J.A., and Chang, J.C. (2013). Patient-derived breast tumor xenografts facilitating personalized cancer therapy. Breast Cancer Res. 15, 201. https://doi.org/10.1186/bcr3355
  39. Li, S.Q., Shen, D., Shao, J.Y., Crowder, R., Liu, W.B., Prat, A., He, X.P., Liu, S.Y., Hoog, J., Lu, C., et al. (2013). Endocrine-therapyresistant ESR1 variants revealed by genomic characterization of breast-cancer-derived xenografts. Cell Rep. 4, 1116-1130. https://doi.org/10.1016/j.celrep.2013.08.022
  40. Lin, D., Wyatt, A. W., Xue, H., Wang, Y., Dong, X., Haegert, A., Wu, R., Brahmbhatt, S., Mo, F., Jong, L., et al. (2014). High fidelity patient-derived xenografts for accelerating prostate cancer discovery and drug development. Cancer Res. 74, 1271-1283. https://doi.org/10.1158/1538-7445.AM2014-1271
  41. Macconaill, L.E., and Garraway, L.A. (2010). Clinical implications of the cancer genome. J. Clin. Oncol. 28, 5219-5228. https://doi.org/10.1200/JCO.2009.27.4944
  42. Marangoni, E., Vincent-Salomon, A., Auger, N., Degeorges, A., Assayag, F., de Cremoux, P., de Plater, L., Guyader, C., De Pinieux, G., Judde, J.G., et al. (2007). A new model of patient tumorderived breast cancer xenografts for preclinical assays. Clin. Cancer Res. 13, 3989-3998. https://doi.org/10.1158/1078-0432.CCR-07-0078
  43. Masso-Valles, D., Jauset, T., Serrano, E., Sodir, N.M., Pedersen, K., Affara, N.I., Whitfield, J.R., Beaulieu, M.E., Evan, G.I., Elias, L., et al. (2015). Ibrutinib exerts potent antifibrotic and antitumor activities in mouse models of pancreatic adenocarcinoma. Cancer Res. 75, 1675-1681. https://doi.org/10.1158/0008-5472.CAN-14-2852
  44. Mattie, M., Christensen, A., Chang, M.S., Yeh, W., Said, S., Shostak, Y., Capo, L., Verlinsky, A., An, Z.L., Joseph, I., et al. (2013). Molecular characterization of patient-derived human pancreatic tumor xenograft models for preclinical and translational development of cancer therapeutics. Neoplasia 15, 1124-1136.
  45. Morton, C.L., and Houghton, P.J. (2007). Establishment of human tumor xenografts in immunodeficient mice. Nat. Protoc. 2, 247- 250. https://doi.org/10.1038/nprot.2007.25
  46. Morton, J.J., Bird, G., Keysar, S.B., Astling, D.P., Lyons, T.R., Anderson, R.T., Glogowska, M.J., Estes, P., Eagles, J.R., Le, P.N., et al. (2015). XactMice: humanizing mouse bone marrow enables microenvironment reconstitution in a patient-derived xenograft model of head and neck cancer. Oncogene (Epub ahead of print).
  47. Muzny, D.M., Bainbridge, M.N., Chang, K., Dinh, H.H., Drummond, J.A., Fowler, G., Kovar, C.L., Lewis, L.R., Morgan, M.B., Newsham, I.F., et al. (2012). Comprehensive molecular characterization of human colon and rectal cancer. Nature 487, 330-337. https://doi.org/10.1038/nature11252
  48. Nardella, C., Lunardi, A., Patnaik, A., Cantley, L.C., and Pandolfi, P.P. (2011). The APL paradigm and the "co-clinical trial" project. Cancer Discov. 1, 108-116. https://doi.org/10.1158/2159-8290.CD-11-0061
  49. Nemati, F., Sastre-Garau, X., Laurent, C., Couturier, J., Mariani, P., Desjardins, L., Piperno-Neumann, S., Lantz, O., Asselain, B., Plancher, C., et al. (2010). Establishment and characterization of a panel of human uveal melanoma xenografts derived from primary and/or metastatic tumors. Clin. Cancer Res. 16, 2352- 2362. https://doi.org/10.1158/1078-0432.CCR-09-3066
  50. Ostman, A. (2012). The tumor microenvironment controls drug sensitivity. Nat. Med. 18, 1332-1334. https://doi.org/10.1038/nm.2938
  51. Pao, W., Miller, V., Zakowski, M., Doherty, J., Politi, K., Sarkaria, I., Singh, B., Heelan, R., Rusch, V., Fulton, L., et al. (2004). EGF receptor gene mutations are common in lung cancers from "never smokers" and are associated with sensitivity of tumors to gefitinib and erlotinib. Proc. Natl. Acad. Sci. USA 101, 13306- 13311. https://doi.org/10.1073/pnas.0405220101
  52. Park, H., Cho, S.Y., Kim, H., Na, D., Han, J.Y., Chae, J., Park, C., Park, O.K., Min, S, Kang, J., et al. (2015). Genomic alterations in BCL2L1 and DLC1 contribute to drug sensitivity in gastric cancer. Proc. Natl. Acad. Sci. USA 112, 12492-12497. https://doi.org/10.1073/pnas.1507491112
  53. Quintas-Cardama, A., and Cortes, J. (2009). Molecular biology of bcr-abl1-positive chronic myeloid leukemia. Blood 113, 1619- 1630. https://doi.org/10.1182/blood-2008-03-144790
  54. Reyal, F., Guyader, C., Decraene, C., Lucchesi, C., Auger, N., Assayag, F., De Plater, L., Gentien, D., Poupon, M.F., Cottu, P., et al. (2012). Molecular profiling of patient-derived breast cancer xenografts. Breast Cancer Res. 14, R11. https://doi.org/10.1186/bcr3095
  55. Reyes, G., Villanueva, A., Garcia, C., Sancho, F.J., Piulats, J., Lluis, F., and Capella, G. (1996). Orthotopic xenografts of human pancreatic carcinomas acquire genetic aberrations during dissemination in nude mice. Cancer Res. 56, 5713-5719.
  56. Rongvaux, A., Willinger, T., Martinek, J., Strowig, T., Gearty, S.V., Teichmann, L.L., Saito, Y., Marches, F., Halene, S., Palucka, A.K., et al. (2014). Development and function of human innate immune cells in a humanized mouse model. Nat. Biotechnol. 32, 364-U230. https://doi.org/10.1038/nbt.2858
  57. Rosen, J.M., and Jordan, C.T. (2009). The increasing complexity of the cancer stem cell paradigm. Science 324, 1670-1673. https://doi.org/10.1126/science.1171837
  58. Rosfjord, E., Lucas, J., Li, G., and Gerber, H.P. (2014). Advances in patient-derived tumor xenografts: From target identification to predicting clinical response rates in oncology. Biochem. Pharmacol. 91, 135-143. https://doi.org/10.1016/j.bcp.2014.06.008
  59. Schatton, T., Murphy, G.F., Frank, N.Y., Yamaura, K., Waaga- Gasser, A.M., Gasser, M., Zhan, Q., Jordan, S., Duncan, L.M., Weishaupt, C., et al. (2008). Identification of cells initiating human melanomas. Nature 451, 345-349. https://doi.org/10.1038/nature06489
  60. Scott, C.L., Becker, M.A., Haluska, P., and Samimi, G. (2013). Patient- derived xenograft models to improve targeted therapy in epithelial ovarian cancer treatment. Front. Oncol. 3, 295.
  61. Shaw, A.T., Yeap, B.Y., Solomon, B.J., Riely, G.J., Gainor, J., Engelman, J.A., Shapiro, G.I., Costa, D.B., Ou, S.H.I., Butaney, M., et al. (2011). Effect of crizotinib on overall survival in patients with advanced non-small-cell lung cancer harbouring ALK gene rearrangement: a retrospective analysis. Lancet Oncol. 12, 1004-1012. https://doi.org/10.1016/S1470-2045(11)70232-7
  62. Siolas, D., and Hannon, G.J. (2013). Patient-derived tumor xenografts: transforming clinical samples into mouse models. Cancer Res. 73, 5315-5319. https://doi.org/10.1158/0008-5472.CAN-13-1069
  63. Slamon, D., Eiermann, W., Robert, N., Pienkowski, T., Martin, M., Press, M., Mackey, J., Glaspy, J., Chan, A., Pawlicki, M., et al. (2011). Adjuvant trastuzumab in HER2-positive breast cancer. N. Engl. J. Med. 365, 1273-1283. https://doi.org/10.1056/NEJMoa0910383
  64. Tentler, J.J., Tan, A.C., Weekes, C.D., Jimeno, A., Leong, S., Pitts, T.M., Arcaroli, J.J., Messersmith, W.A., and Eckhardt, S.G. (2012). Patient-derived tumour xenografts as models for oncology drug development. Nat. Rev. Clin. Oncol. 9, 338-350. https://doi.org/10.1038/nrclinonc.2012.61
  65. Verhaak, R.G.W., Hoadley, K.A., Purdom, E., Wang, V., Qi, Y., Wilkerson, M.D., Miller, C.R., Ding, L., Golub, T., Mesirov, J.P., et al. (2010). Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 17, 98-110. https://doi.org/10.1016/j.ccr.2009.12.020
  66. Von Hoff, D.D., Ramanathan, R.K., Borad, M.J., Laheru, D.A., Smith, L.S., Wood, T.E., Korn, R.L., Desai, N., Trieu, V., Iglesias, J.L., et al. (2011). Gemcitabine plus nab-paclitaxel is an active regimen in patients with advanced pancreatic cancer: a phase I/II trial. J. Clin. Oncol. 29, 4548-4554. https://doi.org/10.1200/JCO.2011.36.5742
  67. Von Hoff, D.D., Ervin, T., Arena, F.P., Chiorean, E.G., Infante, J., Moore, M., Seay, T., Tjulandin, S.A., Ma, W.W., Saleh, M.N., et al. (2013). Increased survival in pancreatic cancer with nabpaclitaxel plus gemcitabine. N. Engl. J. Med. 369, 1691-1703. https://doi.org/10.1056/NEJMoa1304369
  68. Weinstein, J.N., Collisson, E.A., Mills, G.B., Shaw, K.R.M., Ozenberger, B.A., Ellrott, K., Shmulevich, I., Sander, C., and Stuart, J.M. (2013). The cancer genome atlas pan-cancer analysis project. Nat. Genet. 45, 1113-1120. https://doi.org/10.1038/ng.2764
  69. Wetterauer, C., Vlajnic, T., Schuler, J., Gsponer, J.R., Thalmann, G.N., Cecchini, M., Schneider, J., Zellweger, T., Pueschel, H., Bachmann, A., et al. (2015). Early development of human lymphomas in a prostate cancer xenograft program using triple knock-out immunocompromised mice. Prostate 75, 585-592. https://doi.org/10.1002/pros.22939
  70. Whittle, J.R., Lewis, M.T., Lindeman, G.J., and Visvader, J.E. (2015). Patient-derived xenograft models of breast cancer and their predictive power. Breast Cancer Res. 17, 17. https://doi.org/10.1186/s13058-015-0523-1
  71. Williams, S.A., Anderson, W.C., Santaguida, M.T., and Dylla, S.J. (2013). Patient-derived xenografts, the cancer stem cell paradigm, and cancer pathobiology in the 21st century. Lab. Invest. 93, 970-982. https://doi.org/10.1038/labinvest.2013.92
  72. Zhang, X.M., Claerhout, S., Prat, A., Dobrolecki, L.E., Petrovic, I., Lai, Q., Landis, M.D., Wiechmann, L., Schiff, R., Giuliano, M., et al. (2013). A Renewable tissue resource of phenotypically stable, biologically and ethnically diverse, patient-derived human breast cancer xenograft models. Cancer Res. 73, 4885-4897. https://doi.org/10.1158/0008-5472.CAN-12-4081
  73. Zhang, L.H., Liu, Y.Q., Wang, X.H., Tang, Z.Y., Li, S.X., Hu, Y., Zong, X.L., Wu, X.J., Bu, Z.D., Wu, A.W., et al. (2015). The extent of in flammatory infiltration in primary cancer tissues is associated with lymphomagenesis in immunodeficient mice. Sci. Rep. 5, 9447. https://doi.org/10.1038/srep09447
  74. Zhao, X.M., Liu, Z.G., Yu, L.T., Zhang, Y.J., Baxter, P., Voicu, H., Gurusiddappa, S., Luan, J., Su, J.M., Leung, H.C.E., et al. (2012). Global gene expression profiling confirms the molecular fidelity of primary tumor-based orthotopic xenograft mouse models of medulloblastoma. Neuro. Oncol. 14, 574-583. https://doi.org/10.1093/neuonc/nos061

피인용 문헌

  1. Preclinical disease and preventive strategies in IBD: perspectives, challenges and opportunities vol.65, pp.7, 2016, https://doi.org/10.1136/gutjnl-2016-311785
  2. Humanized mouse models: Application to human diseases 2018, https://doi.org/10.1002/jcp.26045
  3. Pancreatic cancer models for translational research vol.173, 2017, https://doi.org/10.1016/j.pharmthera.2017.02.013
  4. Patient-derived xenografts as in vivo models for research in urological malignancies vol.14, pp.5, 2017, https://doi.org/10.1038/nrurol.2017.19
  5. The promise of Janus kinase inhibitors in the treatment of hematological malignancies vol.98, 2017, https://doi.org/10.1016/j.cyto.2016.10.012
  6. A multiplex preclinical model for adenoid cystic carcinoma of the salivary gland identifies regorafenib as a potential therapeutic drug vol.7, pp.1, 2017, https://doi.org/10.1038/s41598-017-11764-2
  7. A Small Molecule Inhibitor of the β-Catenin-TCF4 Interaction Suppresses Colorectal Cancer Growth In Vitro and In Vivo 2017, https://doi.org/10.1016/j.ebiom.2017.09.029
  8. Suppressor of cytokine signaling-1 gene therapy induces potent antitumor effect in patient-derived esophageal squamous cell carcinoma xenograft mice vol.140, pp.11, 2017, https://doi.org/10.1002/ijc.30666
  9. Cancer Immunotherapy: Historical Perspective of a Clinical Revolution and Emerging Preclinical Animal Models vol.8, 2017, https://doi.org/10.3389/fimmu.2017.00829
  10. Patient-derived conditionally reprogrammed cells maintain intra-tumor genetic heterogeneity vol.8, pp.1, 2018, https://doi.org/10.1038/s41598-018-22427-1
  11. Tumor xenograft animal models for esophageal squamous cell carcinoma vol.25, pp.1, 2018, https://doi.org/10.1186/s12929-018-0468-7
  12. Murine models based on acute myeloid leukemia-initiating stem cells xenografting vol.10, pp.6, 2018, https://doi.org/10.4252/wjsc.v10.i6.57
  13. simulation of pancreatic ductal adenocarcinoma vol.8, pp.37, 2018, https://doi.org/10.1039/C8RA02633E
  14. The Generation and Application of Patient-Derived Xenograft Model for Cancer Research vol.50, pp.1, 2018, https://doi.org/10.4143/crt.2017.307
  15. Bacterial Therapy of Cancer: Promises, Limitations, and Insights for Future Directions vol.9, pp.1664-302X, 2018, https://doi.org/10.3389/fmicb.2018.00016
  16. Alterations in the Rho pathway contribute to Epstein-Barr virus–induced lymphomagenesis in immunosuppressed environments vol.131, pp.17, 2018, https://doi.org/10.1182/blood-2017-07-797209
  17. Animal models for modeling pancreatic cancer and novel drug discovery vol.14, pp.2, 2019, https://doi.org/10.1080/17460441.2019.1566319
  18. Targeting RRM2 and Mutant BRAF Is a Novel Combinatorial Strategy for Melanoma vol.14, pp.9, 2016, https://doi.org/10.1158/1541-7786.mcr-16-0099
  19. The Challenge of Developing Autophagy Inhibition as a Therapeutic Strategy vol.76, pp.19, 2016, https://doi.org/10.1158/0008-5472.can-16-0722
  20. Transplantation of Zebrafish Pediatric Brain Tumors into Immune-competent Hosts for Long-term Study of Tumor Cell Behavior and Drug Response vol.123, pp.None, 2016, https://doi.org/10.3791/55712
  21. H3B-6527 Is a Potent and Selective Inhibitor of FGFR4 in FGF19-Driven Hepatocellular Carcinoma vol.77, pp.24, 2017, https://doi.org/10.1158/0008-5472.can-17-1865
  22. Modelomics to Investigate Cancer Bone Metastasis vol.4, pp.2, 2016, https://doi.org/10.1007/s40610-018-0094-x
  23. Mesenchymal glioblastoma constitutes a major ceRNA signature in the TGF-β pathway vol.8, pp.17, 2016, https://doi.org/10.7150/thno.26550
  24. Alpha, 2’-dihydroxy-4,4’-dimethoxydihydrochalcone inhibits cell proliferation, invasion, and migration in gastric cancer in part via autophagy vol.98, pp.None, 2018, https://doi.org/10.1016/j.biopha.2017.12.081
  25. Use of patient-derived xenograft mouse models in cancer research and treatment vol.4, pp.3, 2018, https://doi.org/10.4155/fsoa-2017-0136
  26. Protocol for the avatar acceptability study: a multiperspective cross-sectional study evaluating the acceptability of using patient-derived xenografts to guide personalised cancer care in Australia an vol.8, pp.8, 2016, https://doi.org/10.1136/bmjopen-2018-024064
  27. Generation and application of patient-derived xenograft models in pancreatic cancer research vol.132, pp.22, 2016, https://doi.org/10.1097/cm9.0000000000000524
  28. Oncological and genetic factors impacting PDX model construction with NSG mice in pancreatic cancer vol.33, pp.1, 2016, https://doi.org/10.1096/fj.201800617r
  29. SELECTED ASPECTS OF ALLO- AND XENOGRAFT MODEL APPLICATIONS FOR DEVELOPING NOVEL ANTI-CANCER VACCINES AND ONCOLYTIC VIRUSES vol.21, pp.2, 2016, https://doi.org/10.15789/1563-0625-2019-2-221-230
  30. Development and Significance of Mouse Models in Lymphoma Research vol.14, pp.2, 2016, https://doi.org/10.1007/s11899-019-00504-0
  31. Systematic Review of Patient-Derived Xenograft Models for Preclinical Studies of Anti-Cancer Drugs in Solid Tumors vol.8, pp.5, 2016, https://doi.org/10.3390/cells8050418
  32. CTCs‐derived xenograft development in a triple negative breast cancer case vol.144, pp.9, 2016, https://doi.org/10.1002/ijc.32001
  33. Unstable Genome and Transcriptome Dynamics during Tumor Metastasis Contribute to Therapeutic Heterogeneity in Colorectal Cancers vol.25, pp.9, 2019, https://doi.org/10.1158/1078-0432.ccr-18-3460
  34. Application of Highly Immunocompromised Mice for the Establishment of Patient-Derived Xenograft (PDX) Models vol.8, pp.8, 2016, https://doi.org/10.3390/cells8080889
  35. The promises and challenges of patient‐derived tumor organoids in drug development and precision oncology vol.2, pp.3, 2016, https://doi.org/10.1002/ame2.12077
  36. Review on biofabrication and applications of heterogeneous tumor models vol.13, pp.11, 2016, https://doi.org/10.1002/term.2949
  37. Genomic data analysis workflows for tumors from patient-derived xenografts (PDXs): challenges and guidelines vol.12, pp.1, 2019, https://doi.org/10.1186/s12920-019-0551-2
  38. Impact of mouse contamination in genomic profiling of patient-derived models and best practice for robust analysis vol.20, pp.1, 2019, https://doi.org/10.1186/s13059-019-1849-2
  39. Establishment of chemosensitivity tests in triple-negative and BRCA-mutated breast cancer patient-derived xenograft models vol.14, pp.12, 2016, https://doi.org/10.1371/journal.pone.0225082
  40. HSP90 Inhibitor Ganetespib (STA-9090) Inhibits Tumor Growth in c-Myc-Dependent Esophageal Squamous Cell Carcinoma vol.13, pp.None, 2016, https://doi.org/10.2147/ott.s245813
  41. Breast cancer animal models and applications vol.41, pp.5, 2020, https://doi.org/10.24272/j.issn.2095-8137.2020.095
  42. Targeting antisense mitochondrial noncoding RNAs induces bladder cancer cell death and inhibition of tumor growth through reduction of survival and invasion factors vol.11, pp.7, 2016, https://doi.org/10.7150/jca.38880
  43. High expression of olfactomedin-4 is correlated with chemoresistance and poor prognosis in pancreatic cancer vol.15, pp.1, 2020, https://doi.org/10.1371/journal.pone.0226707
  44. Patient-derived xenografts as compatible models for precision oncology vol.36, pp.None, 2016, https://doi.org/10.1186/s42826-020-00045-1
  45. Preclinical PERCIST and 25% of SUVmax Threshold: Precision Imaging of Response to Therapy in Co-clinical 18F-FDG PET Imaging of Triple-Negative Breast Cancer Patient–Deriv vol.61, pp.6, 2016, https://doi.org/10.2967/jnumed.119.234286
  46. Systematic Establishment of Robustness and Standards in Patient-Derived Xenograft Experiments and Analysis vol.80, pp.11, 2016, https://doi.org/10.1158/0008-5472.can-19-3101
  47. High expression levels of polymeric immunoglobulin receptor are correlated with chemoresistance and poor prognosis in pancreatic cancer vol.44, pp.1, 2016, https://doi.org/10.3892/or.2020.7610
  48. Co-Clinical Imaging Resource Program (CIRP): Bridging the Translational Divide to Advance Precision Medicine vol.6, pp.3, 2016, https://doi.org/10.18383/j.tom.2020.00023
  49. Patient-Derived Tumor Xenograft Models: Toward the Establishment of Precision Cancer Medicine vol.10, pp.3, 2020, https://doi.org/10.3390/jpm10030064
  50. Development and optimization of orthotopic liver metastasis xenograft mouse models in uveal melanoma vol.18, pp.1, 2020, https://doi.org/10.1186/s12967-020-02377-x
  51. The Essential Factors of Establishing Patient-derived Tumor Model vol.12, pp.1, 2016, https://doi.org/10.7150/jca.51749
  52. High levels of human epididymis protein 4 mRNA and protein expression are associated with chemoresistance and a poor prognosis in pancreatic cancer vol.58, pp.1, 2016, https://doi.org/10.3892/ijo.2020.5147
  53. Understanding cell‐cell communication and signaling in the colorectal cancer microenvironment vol.11, pp.2, 2021, https://doi.org/10.1002/ctm2.308
  54. Comparative Gene Signature of (−)-Oleocanthal Formulation Treatments in Heterogeneous Triple Negative Breast Tumor Models: Oncological Therapeutic Target Insights vol.13, pp.5, 2016, https://doi.org/10.3390/nu13051706
  55. An Overview on Diffuse Large B-Cell Lymphoma Models: Towards a Functional Genomics Approach vol.13, pp.12, 2016, https://doi.org/10.3390/cancers13122893
  56. Natural killer cells and cytotoxic T lymphocytes are required to clear solid tumor in a patient-derived xenograft vol.6, pp.13, 2021, https://doi.org/10.1172/jci.insight.140116
  57. Establishment and Characterization of Feline Mammary Tumor Patient-Derived Xenograft Model vol.11, pp.8, 2021, https://doi.org/10.3390/ani11082380
  58. Patient-Derived Xenograft Models in Cervical Cancer: A Systematic Review vol.22, pp.17, 2021, https://doi.org/10.3390/ijms22179369
  59. Predicting Cancer Drug Response In Vivo by Learning an Optimal Feature Selection of Tumour Molecular Profiles vol.9, pp.10, 2016, https://doi.org/10.3390/biomedicines9101319
  60. Patient-Derived Xenografts of High-Grade Serous Ovarian Cancer Subtype as a Powerful Tool in Pre-Clinical Research vol.13, pp.24, 2016, https://doi.org/10.3390/cancers13246288