DOI QR코드

DOI QR Code

Production of Lactulose by Biological Methods and Its Application

생물학적 방법을 통한 기능성 이당 lactulose의 생산과 응용 연구

  • Kim, Yeong-Su (Freshwater Bioresources Utilization Division, Nakdonggang National Institute of Biological Resources) ;
  • Kim, Do-Yeon (International Ginseng & Herb Research Institute) ;
  • Park, Chang-Su (Department of Food Science and Technology, Catholic University of Daegu)
  • 김영수 (국립낙동강 생물자원관 담수생물특성연구실) ;
  • 김도연 ((재)금산국제인삼약초연구소) ;
  • 박창수 (대구가톨릭대학교 식품공학전공)
  • Received : 2016.12.06
  • Accepted : 2016.12.27
  • Published : 2016.12.30

Abstract

Lactulose (4-O-${\beta}$-D-galactopyranosyl-D-fructose) is a non-digestible synthetic ketose disaccharide which can used in food and pharmaceutical fields due to its useful functions for encephalopathy, chronic constipation, hyperammonemia, etc. Therefore, the lactulose is regarded as one of the most important disaccharides and have been concentrated much interesting as an attractive functional material in the current industry. From this reason, the research related on the production of lactulose has been carried out various academic and industrial research groups. To produce lactulose, two main methods, chemical production and enzymatic production have been used. Commercially lactulose produced by alkaline isomerization of lactose as chemical production method but it has many disadvantages such as rapid lactulose degradation, purification, and waste management. From these reasons, lactulose produced by enzymatic method which solves these problems has been suggested as a proper method for lactulose production. Two different enzymatic methods have been reported as methods for lactulose production. Lactulose can be obtained through hydrolysis and transfer reaction catalyzed by a ${\beta}$-galactosidase which requires fructose as co-substrate and exhibits a low conversion. Alternatively, lactulose can be produced by direct isomerization of lactose to lactulose catalyzed by cellobiose 2-epimerase which requires lactose as a single substrate and achieves a high lactulose yield. This review summarizes the current state of lactulose production by chemical and biological methods.

Lactulose는 lactose의 이성질체로 galactose와 fructose의 ${\beta}$-1,4-glycosidic 결합으로 구성된 비소화성 기능성 이당으로 소장에서 분해되지 않고 대장에 도달하여 장내 유산균에 의해 이용되어 대장의 pH를 저하시켜 유해균의 증식을 억제 시키고 장내 균총을 유익한 방향으로 개선하는 효과를 가지고 있다. 또한 수용성 식이섬유로 작용하여 변비와 간성뇌질환등의 치료에 이용되고 있고 lactose에 비해 감미도 및 용해도가 우수하여 다양한 식품산업으로 유용하게 사용될 수 있는 높은 잠재적 활용가치를 보유하고 있는 기능성 당류이기도 하다. Lactulose를 생산하기 위하여 화학적 방법과 효소적 방법이 보고 되어있는데, lactose를 강알칼리 조건에서 이성화시키는 화학적 방법에 의한 lactulose의 생산은 고온, 고압의 반응 조건 및 중화 과정에서 사용되는 강산으로 인해 생성물의 과분해 및 부산물 생성에 의한 복잡한 정제과정이 요구되며 환경오염에 대한 심각한 문제를 내포하고 있다는 단점이 있다. 이러한 화학적 방법과는 달리 ${\beta}$-galactosidase 또는 cellobiose 2-epimerase와 같은 효소를 이용한 lactulose의 생산은 반응의 정밀성, 특이성, 반응공정의 안전성 및 친환경적 생산방법이라는 다양한 장점을 가지고 있다. 하지만, 효소적 생산 방법 중에서 ${\beta}$-galactosidase를 이용한 lactulose의 생산은 기질로서 유당뿐 아니라 과당을 함께 사용해야 하며 높은 기질농도에서만 반응이 이루어 지기 때문에 경제적으로 비효율적이라는 단점이 지적되고 있기도 하다. Lactulose의 효소적 생산방법에 있어서 이러한 단점을 극복하기 위하여 lactose 단일 기질로부터 높은 수율의 lactulose를 생산할 수 있는 cellobiose 2-epimerase를 이용한 lactulose생산 방법에 대한 연구가 활발하게 진행되고 있지만 향후 효소 반응 공정 및 효소특성개량에 대한 지속적인 연구를 통하여 lactulose 산업적 생산을 위한 다양한 연구가 필요한 실정이다.

Keywords

References

  1. Ait Aissa, A. and Aider, M. 2014. Electro-catalytic isomerization of lactose into lactulose: The impact of the electric current, temperature and reactor configuration. Int. Dairy J. 34, 213-219. https://doi.org/10.1016/j.idairyj.2013.08.010
  2. Adachi, S. 1958. Formation of lactulose and tagatose from lactose in strongly heated milk. Nature 181, 840-841. https://doi.org/10.1038/181840a0
  3. Adamczak, M., Charubin, D. and Bednarski, W. 2009. Influence of reaction medium composition on enzymatic synthesis of galactooligosaccharides and lactulose from lactose concentrates prepared from whey permeate. Chem. Pap. 63, 111-116.
  4. Aider, M. and de Halleux, D. 2007. Isomerization of lactose and lactulose production: review. Trends Food Sci. Technol. 18, 356-364. https://doi.org/10.1016/j.tifs.2007.03.005
  5. Aider, M. and Gimenez-Vidal, M. 2013. Lactose isomerization into lactulose in an electro-activation reactor and high-performance liquid chromatography (HPLC) monoitoring of the process. J. Food. Engr. 119, 115-124. https://doi.org/10.1016/j.jfoodeng.2013.05.011
  6. Aider, M. and Gimenez-Vidal, M. 2012. Lactulose synthesis by electro-isomerization of lactose: effect of lactose concentration and elecrric current density. Innov. Food Sci. Emerg. 16, 163-170. https://doi.org/10.1016/j.ifset.2012.05.007
  7. Ait-Aissa, A. and Aider, M. 2014. Lactose electroisomerization into lactulose: effect of the electrode material, active membrane surface area-to-electrode surface area ratio, and interelectrode-membrane distance. J. Dairy Sci. 97, 4811-4823. https://doi.org/10.3168/jds.2014-8120
  8. Ait-Aissa, A. and Aider, M. 2014. Lactulose: production and use in functional food, medical and pharmaceutical applications. Practical and critical review. Int. J. Food Sci. Tech. 49, 1245-1253. https://doi.org/10.1111/ijfs.12465
  9. Avery, G. S., Davies, E. F. and Brogden, R. N. 1972. Lactulose: a review of its therapeutic and pharmacological properties with particular reference to ammonia metabolism and its mode of action of portal systemic encephalopathy. Drugs 4, 7-48. https://doi.org/10.2165/00003495-197204010-00003
  10. Beynen, A. C., Kappert, H. J. and Yu, S. 2001. Dietary lactulose decreases apparent nitrogen absorption and increases apparent calcium and magnesium absorption in healthy dogs. J. Anim. Physiol. Anim. Nutr. (Berl) 85, 67-72. https://doi.org/10.1046/j.1439-0396.2001.00301.x
  11. Bircher, J., Muller, J., Guggenheim, P. and Haemmerli, U. P. 1966. Treatment of chronic portal-systemic encephalopathy with lactulose. Lancet 1, 890-892.
  12. Blanc, P., Daures, J. P., Rouillon, J. M., Peray, P., Pierrugues, R., Larrey, D., Gremy, F. and Michel, H. 1992. Lactitol or lactulose in the treatment of chronic hepatic encephalopathy: results of a meta-analysis. Hepatology 15, 222-228. https://doi.org/10.1002/hep.1840150209
  13. Boehm, G. and Moro, G. 2008. Structural and functional aspects of prebiotics used in infant nutrition. J. Nutr. 138, 1818S-1828S. https://doi.org/10.1093/jn/138.9.1818S
  14. Bouhnik, Y., Attar, A., Joly, F. A., Riottot, M., Dyard, F. and Flourie, B. 2004. Lactulose ingestion increases faecal bifidobacterial counts: a randomised double-blind study in healthy humans. Eur. J. Clin. Nutr. 58, 462-466. https://doi.org/10.1038/sj.ejcn.1601829
  15. Bovee-Oudenhoven, I. M., ten Bruggencate, S. J., Lettink-Wissink, M. L. and van der Meer, R. 2003. Dietary fructo-ligosaccharides and lactulose inhibit intestinal colonisation but stimulate translocation of salmonella in rats. Gut 52, 1572-1578. https://doi.org/10.1136/gut.52.11.1572
  16. Brommage, R., Binacua, C., Antille, S. and Carrie, A. L. 1993. Intestinal calcium absorption in rats is stimulated by dietary lactulose and other resistant sugars. J. Nutr. 123, 2186-2194.
  17. Butterworth, R. F. 2002. Pathophysiology of hepatic encephalopathy: a new look at ammonia. Metab. Brain. Dis. 17, 221-227. https://doi.org/10.1023/A:1021989230535
  18. Chen, X., Zuo, Q., Hai, Y. and Sun, X. J. 2011. Lactulose: an indirect antioxidant ameliorating inflammatory bowel disease by increasing hydrogen production. Med. Hypotheses 76, 325-327. https://doi.org/10.1016/j.mehy.2010.09.026
  19. Clausen, M. R. and Mortensen, P. B. 1997. Lactulose, disaccharides and colonic flora. Clinical consequences. Drugs 53, 930-942. https://doi.org/10.2165/00003495-199753060-00003
  20. Conn, H. O. and Floch, M. H. 1970. Effects of lactulose and Lactobacillus acidophilus on the fecal flora. Am. J. Clin. Nutr. 23, 1588-1594. https://doi.org/10.1093/ajcn/23.12.1588
  21. De Muynck, C., Beauprez, J., Soetaert, W. and Vandamme, E. J. 2006. Boric acid as a mobile phase additive for high performance liquid chromatography separation of ribose, arabinose and ribulose. J. Chromatogr. A 1101, 115-121. https://doi.org/10.1016/j.chroma.2005.09.068
  22. De Souza Oliveira, R. P., Rodrigues Florence, A. C., Perego, P., De Oliveira, M. N. and Converti, A. 2011. Use of lactulose as prebiotic and its influence on the growth, acidification profile and viable counts of different probiotics in fermented skim milk. Int. J. Food Microbiol. 145, 22-27. https://doi.org/10.1016/j.ijfoodmicro.2010.11.011
  23. Drossman, D. A., Li, Z., Andruzzi, E., Temple, R. D., Talley, N. J., Thompson, W. G., Whitehead, W. E., Janssens, J., Funch-Jensen, P., Corazziari, E., Richter J. E. and Koch, G. G. 1993. U.S. householder survey of functional gastrointestinal disorders. Prevalence, sociodemography, and health impact. Dig. Dis. Sci. 38, 1569-1580. https://doi.org/10.1007/BF01303162
  24. Everhart, J. E., Go, V. L., Johannes, R. S., Fitzsimmons, S. C., Roth, H. P. and White, L. R. 1989. A longitudinal survey of self-reported bowel habits in the United States. Dig. Dis. Sci. 34, 1153-1162. https://doi.org/10.1007/BF01537261
  25. Fan, Y., Fang, W., Xiao, Y., Yang, X., Zhang, Y., Bidochka, M. J. and Pei, Y. 2007. Directed evolution for increased chitinase activity. Appl. Microbiol. Biotechnol. 76, 135-139. https://doi.org/10.1007/s00253-007-0996-7
  26. Florent, C., Flourie, B., Leblond, A., Rautureau, M., Bernier, J. J. and Rambaud, J. C. 1985. Influence of chronic lactulose ingestion on the colonic metabolism of lactulose in man (an in vivo study). J. Clin. Invest. 75, 608-613. https://doi.org/10.1172/JCI111738
  27. Fujiwara, T., Saburi, W., Matsui, H., Mori, H. and Yao, M. 2014. Structural insights into the epimerization of beta-1,4- linked oligosaccharides catalyzed by cellobiose 2-epimerase, the sole enzyme epimerizing non-anomeric hydroxyl groups of unmodified sugars. J. Biol. Chem. 289, 3405-3415. https://doi.org/10.1074/jbc.M113.531251
  28. Goldsmith, M. and Tawfik, D. S. 2012. Directed enzyme evolution: beyond the low-hanging fruit. Curr. Opin. Struct. Biol. 22, 406-412. https://doi.org/10.1016/j.sbi.2012.03.010
  29. Gu, J., Yang, R., Hua, X., Zhang, W. and Zhao, W. 2015. Adsorption-based immobilization of Caldicellulosiruptor saccharolyticus cellobiose 2-epimerase on Bacillus subtilis spores. Biotechnol. Appl. Biochem. 62, 237-244. https://doi.org/10.1002/bab.1262
  30. Guerrero, C., Vera, C., Araya, E., Conejeros, R. and Illanes, A. 2015. Repeated-batch operation for the synthesis of lactulose with beta-galactosidase immobilized by aggregation and crosslinking. Bioresour. Technol. 190, 122-131. https://doi.org/10.1016/j.biortech.2015.04.039
  31. Guerrero, C., Vera, C., Plou, F. and Illanes, A. 2011. Influence of reaction conditions on the selectivity of the synthesis of lactulose with microbial beta-galactosidases. J. Mol. Catal. B: Enzym. 72, 206-212. https://doi.org/10.1016/j.molcatb.2011.06.007
  32. Heijnen, A. M., Brink, E. J., Lemmens, A. G. and Beynen, A. C. 1993. Ileal pH and apparent absorption of magnesium in rats fed on diets containing either lactose or lactulose. Br. J. Nutr. 70, 747-756. https://doi.org/10.1079/BJN19930170
  33. Hicks, K. B. and Parrish, F. W. 1980. A new method for the preparation of lactulose from lactose. Carbohydr. Res. 82, 393-397. https://doi.org/10.1016/S0008-6215(00)85716-X
  34. Hicks, K. B. and Parrish, F. W. 1980. Anewmethodfor thepreparation of lactulose from lactose. Carbohydr. Res. 82, 393-397. https://doi.org/10.1016/S0008-6215(00)85716-X
  35. Hua, X., Yang, R., Zhang, W., Fei, Y., Jin, Z. and Jiang, B. 2010. Dual-enzymatic synthesis of lactulose in organicaqueous two-phase media. Food Res. Int. 43, 716-722. https://doi.org/10.1016/j.foodres.2009.11.008
  36. Hung, M. N. and Lee, B. H. 2002. Purification and characterization of a recombinant beta-galactosidase with transgalactosylation activity from Bifidobacterium infantis HL96. Appl. Microbiol. Biotechnol. 58, 439-445. https://doi.org/10.1007/s00253-001-0911-6
  37. Ito, S., Taguchi, H., Hamada, S., Kawauchi, S., Ito, H., Senoura, T., Watanabe, J., Nishimukai, M., Ito, S. and Matsui, H. 2008. Enzymatic properties of cellobiose 2-epimerase from Ruminococcus albus and the synthesis of rare oligosaccharides by the enzyme. Appl. Microbiol. Biotechnol. 79, 433-441. https://doi.org/10.1007/s00253-008-1449-7
  38. Mendicino, J. F. 1960. Effect of borate on the alkali-catalyzed isomerization of sugars. J. Am. Chem. Soc. 82, 4975-4970.
  39. O'Donnell, K. and Kearsley, M. 2012. Sweeteners and Sugar Alternatives in Food Technology, pp. 32-46, 2nd Ed., John Wiley & Sons, Ltd: Chichester, West Sussex, UK.
  40. Kim, J. E., Kim, Y. S., Kang, L. W. and Oh, D. K. 2012. Characterization of a recombinant cellobiose 2-epimerase from Dictyoglomus turgidum that epimerizes and isomerizes beta-1,4- and alpha-1,4-gluco-oligosaccharides. Biotechnol. Lett. 34, 2061-2068. https://doi.org/10.1007/s10529-012-0999-z
  41. Kim, N. H., Kim, H. J., Kang, D. I., Jeong, K. W., Lee, J. K., Kim, Y. and Oh, D. K. 2008. Conversion shift of D-fructose to D-psicose for enzyme-catalyzed epimerization by addition of borate. Appl. Environ. Microbiol. 74, 3008-3013. https://doi.org/10.1128/AEM.00249-08
  42. Kim, Y. S., Kim, J. E. and Oh, D. K. 2013. Borate enhances the production of lactulose from lactose by cellobiose 2-epimerase from Caldicellulosiruptor saccharolyticus. Bioresour. Technol. 128, 809-812. https://doi.org/10.1016/j.biortech.2012.10.060
  43. Kim, Y. S. and Oh, D. K. 2012. Lactulose production from lactose as a single substrate by a thermostable cellobiose 2-epimerase from Caldicellulosiruptor saccharolyticus. Bioresour. Technol. 104, 668-672. https://doi.org/10.1016/j.biortech.2011.11.016
  44. Kokke, F. T., Scholtens, P. A., Alles, M. S., Decates, T. S., Fiselier, T. J., Tolboom, J. J., Kimpen, J. L. and Benninga, M. A. 2008. A dietary fiber mixture versus lactulose in the treatment of childhood constipation: a double-blind randomized controlled trial. J. Pediatr. Gastr. Nutr. 47, 592-597. https://doi.org/10.1097/MPG.0b013e318162c43c
  45. Kot, T. V. and Pettit-Young, N. A. 1992. Lactulose in the management of constipation: a current review. Ann. Pharmacother. 26, 1277-1282. https://doi.org/10.1177/106002809202601017
  46. Koutelidakis, I., Papaziogas, B., Giamarellos-Bourboulis, E. J., Makris, J., Pavlidis, T., Giamarellou, H. and Papaziogas, T. 2003. Systemic endotoxaemia following obstructive jaundice: the role of lactulose. J. Surg. Res. 113, 243-247. https://doi.org/10.1016/S0022-4804(03)00209-9
  47. Kunz, C. and Rudloff, S. 1993. Biological functions of oligosaccharides in human milk. Acta Paediatr. 82, 903-912. https://doi.org/10.1111/j.1651-2227.1993.tb12597.x
  48. Lee, Y. J., Kim, C. S. and Oh, D. K. 2004. Lactulose production by beta-galactosidase in permeabilized cells of Kluyveromyces lactis. Appl. Microbiol. Biotechnol. 64, 787-793. https://doi.org/10.1007/s00253-003-1506-1
  49. Levine, M. M. and Hornick, R. B. 1975. Lactulose therapy in Shigella carrier state and acute dysentery. Antimicrob. Agents. Chemother. 8, 581-584. https://doi.org/10.1128/AAC.8.5.581
  50. Loguercio, C., Abbiati, R., Rinaldi, M., Romano, A., Del Vecchio Blanco, C. and Coltorti, M. 1995. Long-term effects of Enterococcus faecium SF68 versus lactulose in the treatment of patients with cirrhosis and grade 1-2 hepatic encephalopathy. J. Hepatol. 23, 39-46. https://doi.org/10.1016/0168-8278(95)80309-2
  51. M'endez A. and Olano, A. 1979. Lactulose: a review of some chemical properties and applications in infant nutrition and medicine. Dairy. Sci. Abstr. 41, 531-535.
  52. Mayer, J., Conrad, J., Klaiber, I., Lutz-Wahl, S., Beifuss, U. and Fischer, L. 2004. Enzymatic production and complete nuclear magnetic resonance assignment of the sugar lactulose. J. Agric. Food Chem. 52, 6983-6990. https://doi.org/10.1021/jf048912y
  53. Mayer, J., Kranz, B. and Fischer, L. 2010. Continuous production of lactulose by immobilized thermostable beta-glycosidase from Pyrococcus furiosus. J. Biotechnol. 145, 387-393. https://doi.org/10.1016/j.jbiotec.2009.12.017
  54. Nagengast, F. M., Hectors, M. P., Buys, W. A. and van Tongeren, J. H. 1988. Inhibition of secondary bile acid formation in the large intestine by lactulose in healthy subjects of two different age groups. Eur. J. Clin. Invest. 18, 56-61. https://doi.org/10.1111/j.1365-2362.1988.tb01166.x
  55. Olano, A. and Corzo, N. 2009. Lactulose as a food ingredient. J. Sci. Food Agric. 89, 1987-1990. https://doi.org/10.1002/jsfa.3694
  56. Onishi, N. and Tanaka, T. 1995. Purification and properties of a novel thermostable galacto-oligosaccharide-producing beta-galactosidase from Sterigmatomyces elviae CBS8119. Appl. Environ. Microbiol. 61, 4026-4030.
  57. Panesar, P. S. and Kumari, S. 2011. Lactulose: production, purification and potential applications. Biotechnol. Adv. 29, 940-948. https://doi.org/10.1016/j.biotechadv.2011.08.008
  58. Park, C. S., Kim, J. E., Choi, J. G. and Oh, D. K. 2011. Characterization of a recombinant cellobiose 2-epimerase from Caldicellulosiruptor saccharolyticus and its application in the production of mannose from glucose. Appl. Microbiol. Biotechnol. 92, 1187-1196. https://doi.org/10.1007/s00253-011-3403-3
  59. Petuely, F. 1957. Lactobacillus bifidus flora produced in artificially- fed infants by bifidogenic substances (bifidus factor). Z. Kinderheilkd 79, 174-179. https://doi.org/10.1007/BF00440162
  60. Pham, T. T. and Shah, N. P. 2008. Effects of lactulose supplementation on the growth of bifidobacteria and biotransformation of isoflavone glycosides to isoflavone aglycones in soymilk. J. Agric. Food Chem. 56, 4703-4709. https://doi.org/10.1021/jf072716k
  61. Porkka, L., Salminen, E. and Salminen, S. 1988. The effects of lactulose-sweetened yoghurt on the rate of gastric emptying and intestinal transit in healthy human volunteers. Z. Ernahrungswiss 27, 150-154. https://doi.org/10.1007/BF02024719
  62. Prasad, S., Dhiman, R. K., Duseja, A., Chawla, Y. K., Sharma, A. and Agarwal, R. 2007. Lactulose improves cognitive functions and health-related quality of life in patients with cirrhosis who have minimal hepatic encephalopathy. Hepatology 45, 549-559. https://doi.org/10.1002/hep.21533
  63. Rikkers, L., Jenko, P., Rudman, D. and Freides, D. 1978. Subclinical hepatic encephalopathy: detection, prevalence, and relationship to nitrogen metabolism. Gastroenterology 75, 462-469.
  64. Rousseau, P. 1988. Treatment of constipation in the elderly. Postgrad. Med. 83, 339-349. https://doi.org/10.1080/00325481.1988.11700207
  65. Ruttloff, H. T., Krause, W., Haenel, H. and Taufel, K. 1967. The intestinal enzymaticdecompositionof galacto-oligosaccharides inthehuman and animal intestine, with particular regard to Lactobacillus bifidus. Part 2. On the intestinal behaviour of lactulose. Nahrung 11, 39-46. https://doi.org/10.1002/food.19670110106
  66. Saburi, W., Yamamoto, T., Taguchi, H., Hamada, S. and Matsui, H. 2010. Practical preparation of epilactose produced with cellobiose 2-epimerase from Ruminococcus albus NE1. Biosci. Biotechnol. Biochem. 74, 1736-1737. https://doi.org/10.1271/bbb.100353
  67. Schumann, C. 2002. Medical, nutritional and technological properties of lactulose. An update. Eur. J. Nutr. 41, 17-25.
  68. Schuster-Wolff-Buhring, R., Fischer, L. and Hinrichs, J. 2010. Production and physiological action of the disaccharide lactulose. Int. Dairy J. 20, 731-741. https://doi.org/10.1016/j.idairyj.2010.05.004
  69. Seki, N., Hamano, H., Iiyama, Y., Asano, Y., Kokubo, S., Yamauchi, K., Tamura, Y., Uenishi, K. and Kudou, H. 2007. Effect of lactulose on calcium and magnesium absorption: a study using stable isotopes in adult men. J. Nutr. Sci. Vitaminol. (Tokyo) 53, 5-12. https://doi.org/10.3177/jnsv.53.5
  70. Senoura, T., Taguchi, H., Ito, S., Hamada, S., Matsui, H., Fukiya, S., Yokota, A., Watanabe, J., Wasaki, J. and Ito, S. 2009. Identification of the cellobiose 2-epimerase gene in the genome of Bacteroides fragilis NCTC 9343. Biosci. Biotechnol. Biochem. 73, 400-406. https://doi.org/10.1271/bbb.80691
  71. Shen, Q., Yang, R., Hua, X., Ye, F., Wang, H., Zhao, W. and Wang, K. 2012. Enzymatic synthesis and identification of oligosaccharides obtained by transgalactosylation of lactose in the presence of fructose using beta-galactosidase from Kluyveromyces lactis. Food Chem. 135, 1547-1554. https://doi.org/10.1016/j.foodchem.2012.05.115
  72. Shen, Q., Zhang, Y., Yang, R., Pan, S., Dong, J., Fan, Y. and Han, L. 2016. Enhancement of isomerization activity and lactulose production of cellobiose 2-epimerase from Caldicellulosiruptor saccharolyticus. Food Chem. 207, 60-67. https://doi.org/10.1016/j.foodchem.2016.02.067
  73. Stadtner, D. 1997. Persistent cough in California. Hosp. Pract. (1995) 32, 41, 44.
  74. Taguchi, H., Senoura, T., Hamada, S., Matsui, H., Kobayashi, Y., Watanabe, J., Wasaki, J. and Ito, S. 2008. Cloning and sequencing of the gene for cellobiose 2-epimerase from a ruminal strain of Eubacterium cellulosolvens. FEMS Microbiol. Lett. 287, 34-40. https://doi.org/10.1111/j.1574-6968.2008.01281.x
  75. Talley, N. J., Abreu, M. T., Achkar, J. P., Bernstein, C. N., Dubinsky, M. C., Hanauer, S. B., Kane, S. V., Sandborn, W. J., Ullman, T. A., Moayyedi, P. and American College of Gastroenterology, I.B.D.T.F. 2011. An evidence-based systematic review on medical therapies for inflammatory bowel disease. Am. J. Gastroenterol. 106 Suppl 1, S2-25; quiz S26. https://doi.org/10.1038/ajg.2011.58
  76. Tedesco, F. J. and DiPiro, J. T. 1985. Laxative use in constipation. American College of Gastroenterology's Committee on FDA-Related Matters. Am. J. Gastroenterol. 80, 303-309.
  77. Vaheri, M. and Kaupinnen, V. 1978. The formation of lactulose (4-O-beta galactopyranosyl fructose by beta-galactosidase. Acta Pharm. Fenn. 87, 75-83.
  78. Van den Heuvel, E. G., Muijs, T., Van Dokkum, W. and Schaafsma, G. 1999. Lactulose stimulates calcium absorption in postmenopausal women. J. Bone Miner. Res. 14, 1211-1216. https://doi.org/10.1359/jbmr.1999.14.7.1211
  79. Verhulst, A. and Pandey, V. S. 1978. Infectious livestock diseases in the Republic of Zaire. Bull. Anim. Health. Prod. Afr. 26, 236-241.
  80. Verma, A. and Shukla, G. 2013. Administration of prebiotic inulin suppresses 1, 2 dimethylhydrazine dihydrochloride induced procarcinogenic biomarkers fecal enzymes and preneoplastic lesions in early colon carcinogenesis in Sprague Dawley rats. J. Func. Food. 5, 991-996. https://doi.org/10.1016/j.jff.2013.02.006
  81. Villamiel, M., Corzo, N., Foda, M. I., Montes, F. and Olano, A. 2002. Lactulose formation catalysed by alkaline-substituted sepiolites in milk permeate. Food Chem. 76, 7-11. https://doi.org/10.1016/S0308-8146(01)00239-4
  82. Wang, M., Yang, R., Hua, X., Shen, Q., Zhang, W. and Zhao, W. 2015. Lactulose production from lactose by recombinant cellobiose 2-epimerase in permeabilised Escherichia coli cells. Int. J. Food Sci. Tech. 50, 1625-1631. https://doi.org/10.1111/ijfs.12776
  83. Wesselius-De Casparis, A., Braadbaart, S., Bergh-Bohlken, G. E. and Mimica, M. 1968. Treatment of chronic constipation with lactulose syrup: results of a double-blind study. Gut 9, 84-86. https://doi.org/10.1136/gut.9.1.84
  84. Wright, G., Chattree, A. and Jalan, R. 2011. Management of hepatic encephalopathy. Int. J. Hepatol. 2011, 1-10.
  85. Yeom, S. J., Kim, Y. S. and Oh, D. K. 2013. Development of novel sugar isomerases by optimization of active sites in phosphosugar isomerases for monosaccharides. Appl. Environ. Microbiol. 79, 982-988. https://doi.org/10.1128/AEM.02539-12
  86. Kim, Y, S., Park, C. S. and Oh, D. K. 2006. Lactulose production from lactose and fructose by a thermostable beta- galactosidase from Sulfolobus solfataricus. Enzyme Microb. Tech. 39, 903-908. https://doi.org/10.1016/j.enzmictec.2006.01.023
  87. Yoshinari, T., Forbes, R. T., York, P. and Kawashima, Y. 2003. Crystallisation of amorphous mannitol is retarded using boric acid. Int. J. Pharm. 258, 109-120. https://doi.org/10.1016/S0378-5173(03)00155-8
  88. Zhu, L., Tee, K. L., Roccatano, D., Sonmez, B., Ni, Y., Sun, Z. H. and Schwaneberg, U. 2010. Directed evolution of an antitumor drug (arginine deiminase PpADI) for increased activity at physiological pH. Chembiochem 11, 691-697. https://doi.org/10.1002/cbic.200900717
  89. Zokaee, F., Kaghazchi, T., Soleimani, M. and Zare, A. 2002. Isomerisation of lactose to lactulose using sweet cheese whey ultrafiltrate. J. Chin. Inst. Chem. Eng. 33, 307-313
  90. Zokaee, F., Kaghazchi, T., Zare, A. and Soleimani, M. 2002. Isomerization of lactose to lactulose-study and comparison of three catalytic systems. Process Biochem. 37, 629-635. https://doi.org/10.1016/S0032-9592(01)00251-5