DOI QR코드

DOI QR Code

Effects of Yeast Growth Inhibiting and Yogurt Quality Improving with Lactobacillus paracasei and Lactobacillus rhamnosus

Lactobacillus paracasei와 Lactobacillus rhamnosus를 이용한 요구르트의 효모 성장 억제와 품질 향상 효과

  • Kim, Chul-Hong (Binggrae Company) ;
  • Nam, Myoung Soo (Division of Animal Resources Science, College of Agriculture and Life Sciences, Chungnam National University)
  • Received : 2016.07.25
  • Accepted : 2016.11.22
  • Published : 2016.12.30

Abstract

Yeast can be post-contaminated by the equipment, producer, or air, and this can degrade yogurt quality. This study aimed to demonstrate the yeast inhibiting effect in fermented milk by adding Lactobacillus paracasei and Lactobacillus rhamnosus along with current fermenting lactic acid bacteria such as Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus thermophilus. A certain amount of yeast was added to fermented milk samples that were soon after stored at variable temperatures, and the number of yeast cells was counted periodically. The swelling phenomenon caused by the gas produced by the yeast in fermented products was also observed. In the two experiments, compared to the control, the L. paracasei- and L. rhamnosus-added-groups showed much slower rate of yeast appearance and lower frequency of swelling phenomena. This suggests that using a mixture of L. paracasei and L. rhamnosus in fermented milk inhibits the growth of yeast. Furthermore, if the products are stored at $10^{\circ}C$, post-acidification is rarely seen in the experimental group compared to the control group. This means that the organoleptic flavor can be kept consistent from the production day till the expiration day, resulting in improved organoleptic quality for customers. In other words, the use of L. paracasei and L. rhamnosus in fermented milk will result in the following positive effects: improvement in storage stability by delaying yeast appearance, increase in quality consistency by inhibiting post-acidification, and improved organoleptic quality by enhancing texture and flavor.

본 연구는 Lactobacillus paracasei와 Lactobacillus rhamnosus가 요구르트에 오염된 효모의 증식을 억제해서 품질을 향상시키기 위하여 진행하였다. 효모 투입 후 저장기간 동안 효모의 증식 속도는 Lactobacillus paracasei와 Lactobacillus rhamnosus가 포함된 실험구가 대조구에 비해 최소 1일에서 최대 4일까지 지연시켰다. 스웰링 현상은 대조구에 비해 실험구가 효모의 증식 속도를 일정 기간 지연시켜 주는 효과가 있었다. 따라서 요구르트 제조 시 Lactobacillus paracasei와 Lactobacillus rhamnosus를 사용한다면, 저장기간 동안의 품질 안정성이 향상되어 유통기한을 연장할 수 있고, 이로 인해 발효유 제조업체의 생산성과 소비자의 식품 안전성이 향상되는 것으로 사료된다. 또한 Lactobacillus paracasei와 Lactobacillus rhamnosus가 요구르트의 품질 기준인 후산 발효와 관능에 미치는 영향에 대해 조사하였다. 요구르트 제조 후 $10^{\circ}C$에서 저장할 경우 대조구에 비해 실험구의 산도 변화 폭은 미미하여 후산 발효가 거의 일어나지 않았다는 것을 알 수 있었다. 이는 제조일로부터 유통기한 만료일까지 일정하게 관능적 풍미를 유지시켜 줄 수 있다는 것을 의미하며, 이로 인해 소비자에 대한 관능적 품질향상을 꾀할 수 있다. 그리고 Lactobacillus paracasei와 Lactobacillus rhamnosus가 추가된 실험구는 대조구에 비해 조직감이 상대적으로 좋았으며, 풍미나 맛 또한 우수하였다. 즉, 요구르트에 Lactobacillus paracasei와 Lactobacillus rhamnosus의 사용은 효모의 증식 억제를 통해 제품 품질의 안전성 향상, 후산 발효 억제로 인한 품질의 균일성 증대, 조직감 및 풍미 향상으로 인한 관능적 품질 향상에 긍정적인 영향을 끼칠 것으로 판단된다.

Keywords

References

  1. Aiba, Y., Suzuki, N., Kabir, A. M., Takagi, A. and Koga, Y. 1998. Lactic acid-mediated suppression of Helicobacter pylori by the oral administration of Lactobacillus salivarius as a probiotic in agnotobiotic murine model. Am. J. Gastroenterol. 93, 2097-2101. https://doi.org/10.1111/j.1572-0241.1998.00600.x
  2. Bhowmik, T., Johnson, M. C. and Ray, B. 1987. Factors influencing synthesis and activity of ${\beta}$-galactosidase in Lactobacillus acidohpilus. J. Ind. Microbiol. Biotechnol. 2, 1-7.
  3. Chammas, G., Saliba, R., Corrieu, G. and Beal, C. 2006. Characterization of lactic acid bacteria isolated from fermented milk laban. Int. J. Food Microbiol. 110, 52-61. https://doi.org/10.1016/j.ijfoodmicro.2006.01.043
  4. Chung, K. T., Stevens, S. E. and Cerniglia, C. E. 1992. The reduction of azo dyes by the intestinal microflora. Crit. Rev. Microbiol. 18, 175-190. https://doi.org/10.3109/10408419209114557
  5. Davis, J. G. 1975. The microbiology of yogurt. pp. 245-263, ed., Academic Press, London, England.
  6. Gilliand, S. E. and Speck, M. L. 1997. Deconjugation of bile acids by intestinal lactobacilli. Appl. Environ. Microbiol. 33, 15-18.
  7. Havenaar, R., Brink, B. T. and Veld, J. H. 1992. Selection of strains for probiotic use. pp. 209-224. In: Fuller, R.(eds.), Probiotics. Chapman & Hall, New York, USA.
  8. Kang, T. J. 2009. Dfficacy and use of lactic acid bacteria. Biowave 11, 1-20.
  9. Kebede, A., Viljoen, B. C., Gadaga, T. H., Narvhus, J. A. and Lourens-Hattingh, A. 2007. The effect of container type on the growth of yeast and lactic acid bacteria during production of Sethemi, South African spontaneously fermented milk. Food Res. Int. 40, 33-38. https://doi.org/10.1016/j.foodres.2006.07.012
  10. Kim, T. W., Lee, J. H., Kim, S. E., Park, M. H., Chang, H. C. and Kim, H. Y. 2009. Analysis of microbial communities in doenjang, a Korean fermented soybean paste, using nested PCR-denaturing gradient gel electrophoresis. Int. J. Food Microbiol. 131, 265-271. https://doi.org/10.1016/j.ijfoodmicro.2009.03.001
  11. Klaver, F. A. M. and Van der Meer, R. 1993. The assumed assimilation of cholesterol by Lactobacillus and Bifidobacterium bifidum is due to their bile salt deconjugation activity. Appl. Environ. Microbiol. 59, 1120-1124.
  12. Lee, H., Yoon, H., Ji, Y., Kim, H., Park, H., lee, J., Shin, H. and Holzapfel, W. 2011. Functional properties of Lactobacillus strains isolated from kimchi. Int. J. Food Microbiol. 145, 155-161. https://doi.org/10.1016/j.ijfoodmicro.2010.12.003
  13. Lee, J. L., Huh, C. S. and Baek, Y. J. 1999. Utilization of fermented milk and it's health promotion. Kor. J. Dairy Sci. Technol. 17, 58-71.
  14. Lee, J. Y., Kim, C. J. and Kunz, B. 2006. Identification of lactic acid bacteria isolated from kimchi and studies on their suitability for application as starter culture in the production of fermented sausages. Meat Sci. 72, 437-445. https://doi.org/10.1016/j.meatsci.2005.08.013
  15. Liu, S. Q. and Tsao, M. 2009. Enhancement of survival of probiotic and non-probiotic lactic acid bacteria by yeasts in fermented milk under non-refrigerated conditions. Int. J. Food Microbiol. 135, 34-38. https://doi.org/10.1016/j.ijfoodmicro.2009.07.017
  16. Maire, B., Colin, H. and Cormac, G. M. G. 2006. Bile salt hydrolase activity in probiotics. Appl. Environ. Microbiol. 72, 1729-1738. https://doi.org/10.1128/AEM.72.3.1729-1738.2006
  17. Moreira, M., Abraham, A. and De Antoni, G. 2000. Technological properties of milks fermented with thermophilic lactic acid bacteria at suboptimal temperature. J. Dairy Sci. 83, 395-400. https://doi.org/10.3168/jds.S0022-0302(00)74894-6
  18. Nam, Y. D., Chang, H. W., Kim, K. H., Roh, S. W. and Bae, J. W. 2009. Metatranscriptome analysis of lactic acid bacteria during kimchi fermentation with genome-probing microarrays. Int. J. Food Microbiol. 130, 140-146. https://doi.org/10.1016/j.ijfoodmicro.2009.01.007
  19. Shin, K. S., Kim, Y. T., Son, W. G., Seok, J. H. and Kim, S. H. 1997. Growth inhibition effect of E. coli O157:H7 and Salmonella typhimurium by lactic fermented milk products administrated orally in rabbit. J. Food Hyg. Safety. 12, 188-194.
  20. Shukla, S., Park, H. K., Kim, J. K. and Kim, M. 2010. Determination of biogenic amines in Korean traditional fermented soybean paste (Doen jang). Food Chem. Toxicol. 48, 1191-1195. https://doi.org/10.1016/j.fct.2010.01.034
  21. Salomskiene, J. and Macioniene, I. 2009. The influence of contamination yoghurt, Quark and semi-hard cheese by yeast on their sensory properties. Vet. Med. Zoot. 48, 72-76.
  22. Suriya, P., Sudha, K., Mathangi, S. K. and Thygarajan, D. 2012. Incidence of aflatoxin contamination and assessment of physico-chemical parameters in breakfat cereal. Int. J. Food Agric. Vet. Sci. 2, 13-19.
  23. Twetman, S. and Stechsen-Blicks, C. 2008. Probiotics and oral health effects in children. Int. J. Pediatr. Dent. 18, 3-10.
  24. Wang, Y. C., Yu, R. C. and Chou, C. C. 2004. Viability of lactic acid bacteria and bifidobacteria in fermented soymilk after drying, subsequent rehydration and storage. Int. J. Food Microbiol. 93, 209-217. https://doi.org/10.1016/j.ijfoodmicro.2003.12.001
  25. Yang, E. J. and Chang, H. C. 2010. Purification of a new antifungal compound produced by Lactobacillus plantarum AF1 isolated from kimchi. Int. J. Food Microbiol. 139, 56-63. https://doi.org/10.1016/j.ijfoodmicro.2010.02.012