DOI QR코드

DOI QR Code

Characteristics of Bulk and Coating in Gd2-xZr2+xO7+0.5x(x = 0.0, 0.5, 1.0) System for Thermal Barrier Coatings

  • Kim, Sun-Joo (Engineering Ceramics Center, Korea Institute of Ceramic & Engineering Technology) ;
  • Lee, Sung-Min (Engineering Ceramics Center, Korea Institute of Ceramic & Engineering Technology) ;
  • Oh, Yoon-Suk (Engineering Ceramics Center, Korea Institute of Ceramic & Engineering Technology) ;
  • Kim, Hyung-Tae (Engineering Ceramics Center, Korea Institute of Ceramic & Engineering Technology) ;
  • Jang, Byung-Koog (Research Center for Structural Materials, National Institute for Materials Science) ;
  • Kim, Seongwon (Engineering Ceramics Center, Korea Institute of Ceramic & Engineering Technology)
  • Received : 2016.10.16
  • Accepted : 2016.11.16
  • Published : 2016.11.30

Abstract

Gadolinium zirconate, $Gd_2Zr_2O_7$, is one of the most versatile oxides among the new thermal-barrier-coating (TBC) materials for replacing conventional yttira-stabilized zirconia (YSZ). $Gd_2Zr_2O_7$ exhibits excellent properties, such as low thermal conductivity, high thermal expansion coefficient comparable with that of YSZ, and chemical stability at high temperature. In this study, bulk and coating specimens with $Gd_{2-x}Zr_{2+x}O_{7+0.5x}$ (x = 0.0, 0.5, 1.0) compositions were fabricated in order to examine the characteristics of this gadolinium zirconate system with different Gd content for TBC applications. Especially, coatings with $Gd_{2-x}Zr_{2+x}O_{7+0.5x}$ (x = 0.0, 0.5, 1.0) compositions were produced by suspension plasma spray (SPS) with suspension of raw powder mixtures prepared by planetary milling followed by ball milling. Phase formation, microstructure, and thermal diffusivity were characterized for both sintered and coated specimens. Single phase materials with pyrochlore or fluorite were fabricated by normal sintering as well as SPS coating. In particular, coated specimens showed vertically-separated columnar microstructures with thickness of $400{\sim}600{\mu}m$.

Keywords

References

  1. D. R. Clarke and S. R. Phillpot, "Thermal Barrier Coating Materials," Mater. Today, 8 [6] 22-9 (2005). https://doi.org/10.1016/S1369-7021(05)70934-2
  2. R. Vassen, M. O. Jarligo, T. Steinke, D. E. Mack, and D. Stover, "Overview on Advanced Thermal Barrier Coatings," Surf. Coat. Technol., 205 [4] 938-42 (2010). https://doi.org/10.1016/j.surfcoat.2010.08.151
  3. D. R. Clarke, M. Oechsner, and N. P. Padture, "Thermal-Barrier Coatings for More Efficient Gas-Turbine Engines," MRS Bull., 37 [10] 891-98 (2012). https://doi.org/10.1557/mrs.2012.232
  4. C. Kim, Y. S. Heo, T. W. Kim, and K. S. Lee, "Fabrication and Characterization of Zirconia Thermal Barrier Coatings by Spray Drying and Atmospheric Plasma Spraying (in Korean)," J. Korean Ceram. Soc., 50 [5] 326-32 (2013). https://doi.org/10.4191/kcers.2013.50.5.326
  5. R. Vassen, X. Cao, F. Tietz, D. Basu, and D. Stover, "Zirconates as New Materials for Thermal Barrier Coatings," J. Am. Ceram. Soc., 83 [8] 2023-28 (2000).
  6. J. Wu, X. Wei, N. P. Padture, P. G. Klemens, M. Gell, E. García, P. Miranzo, and M. I. Osendi, "Low-Thermal-Conductivity Rare-Earth Zirconates for Potential Thermal-Barrier-Coating Applications," J. Am. Ceram. Soc., 85 [12] 3031-35 (2002). https://doi.org/10.1111/j.1151-2916.2002.tb00574.x
  7. W. Pan, S. R. Phillpot, C. Wan, A. Chernatynskiy, and Z. Qu, "Low Thermal Conductivity Oxides," MRS Bull., 37 [10] 917-22 (2012). https://doi.org/10.1557/mrs.2012.234
  8. X. Q. Cao, R. Vassen, and D. Stoever, "Ceramic Materials for Thermal Barrier Coatings," J. Eur. Ceram. Soc., 24 [1] 1-10 (2004). https://doi.org/10.1016/S0955-2219(03)00129-8
  9. J. W. Fergus, "Zirconia and Pyrochlore Oxides for Thermal Barrier Coatings in Gas Turbine Engines," Metall. Mater. Trans. E, 1 [2] 118-31 (2014). https://doi.org/10.1007/s40553-014-0012-y
  10. H. Lehmann, D. Pitzer, G. Pracht, R. Vassen, and D. Stover, "Thermal Conductivity and Thermal Expansion Coefficients of the Lanthanum Rare-Earth-Element Zirconate System," J. Am. Ceram. Soc., 86 [8] 1338-44 (2003). https://doi.org/10.1111/j.1151-2916.2003.tb03473.x
  11. K.-H. Kwak, B.-C. Shim, S.-M. Lee, Y.-S. Oh, H.-T. Kim, B.-K. Jang, and S. Kim, "Formation and Thermal Properties of Fluorite-Pyrochlore Composite Structure in $La_2(Zr_XCe_{1-X})_2O_7$ Oxide System," Mater. Lett., 65 [19] 2937-40 (2011). https://doi.org/10.1016/j.matlet.2011.06.043
  12. J. Wu, N. P. Padture, P. G. Klemens, M. Gell, E. Garcia, P. Miranzo, and M. I. Osendi, "Thermal Conductivity of Ceramics in the $ZrO_2-GdO_{1.5}$ System," J. Mater.Res., 17 [12] 3193-200 (2002). https://doi.org/10.1557/JMR.2002.0462
  13. C. G. Levi, "Emerging Materials and Processes for Thermal Barrier Systems," Curr. Opin Solid State Mater. Sci., 8 [1] 77-91 (2004). https://doi.org/10.1016/j.cossms.2004.03.009
  14. S.-J. Kim, W.-J. Lee, C.-S. Kwon, S.-M. Lee, Y.-S. Oh, H.-T. Kim, D.-S. Im, and S. Kim, "Phase Formation and Thermo-Physical Properties of $GdO_{1.5}-ZrO_2$ System for Thermal Barrier Coating Application (in Korean)," J. Korean Ceram. Soc., 51 [6] 554-59 (2014). https://doi.org/10.4191/kcers.2014.51.6.554
  15. U. Schulz, B. Saruhan, K. Fritscher, and C. Leyens, "Review on Advanced Eb-Pvd Ceramic Topcoats for Tbc Applications," Int. J. Appl. Ceram. Technol., 1 [4] 302-15 (2004). https://doi.org/10.1111/j.1744-7402.2004.tb00182.x
  16. R. Vassen, H. Kassner, A. Stuke, F. Hauler, D. Hathiramani, and D. Stover, "Advanced Thermal Spray Technologies for Applications in Energy Systems," Surf. Coat. Technol., 202 [18] 4432-37 (2008). https://doi.org/10.1016/j.surfcoat.2008.04.022
  17. S. Sampath, U. Schulz, M. O. Jarligo, and S. Kuroda, "Processing Science of Advanced Thermal-Barrier Systems," MRS Bulletin., 37 [10] 903-10 (2012). https://doi.org/10.1557/mrs.2012.233
  18. W. Fan and Y. Bai, "Review of Suspension and Solution Precursor Plasma Sprayed Thermal Barrier Coatings," Ceram. Int., 42 14299-312 (2016). https://doi.org/10.1016/j.ceramint.2016.06.063
  19. J. B. Nelson and D. P. Riley, "An Experimental Investigation of Extrapolation Methods in the Derivation of Accurate Unit-Cell Dimensions of Crystals," Proc. Phys. Soc., 57 [3] 160 (1945). https://doi.org/10.1088/0959-5309/57/3/302
  20. D. Michel and R. Collongues, "Study by Raman Spectroscopy of Order-Disorder Phenomena Occurring in Some Binary Oxides with Fluorite-Related Structures," J. Raman Spectro., 5 [2] 163-80 (1976). https://doi.org/10.1002/jrs.1250050208
  21. R. Leckie, S. Kramer, M. Rühle, and C. Levi, "Thermochemical Compatibility between Alumina and $ZrO_2-GdO_{3/2}$ Thermal Barrier Coatings," Acta Mater., 53 [11] 3281-92 (2005). https://doi.org/10.1016/j.actamat.2005.03.035
  22. R. Shannon, "Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides," Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr., 32 [5] 751-67 (1976). https://doi.org/10.1107/S0567739476001551
  23. K. VanEvery, M. J. M. Krane, R. W. Trice, H. Wang, W. Porter, M. Besser, D. Sordelet, J. Ilavsky, and J. Almer, "Column Formation in Suspension Plasma-Sprayed Coatings and Resultant Thermal Properties," J. Therm. Spray Technol., 20[4] 817-28 (2011). https://doi.org/10.1007/s11666-011-9632-2
  24. C.-S. Kwon, S.-M. Lee, Y.-S. Oh, H.-T. Kim, B.-K. Jang, and S. Kim, "Preparation of Suspension in $La_2O_{3^-}Gd_2O_{3^-}ZrO_2$ System Via Planetary Mill and Characteristics of $(La_{1-X}Gd_X)_2Zr_2O_7$ Coatings Fabricated Via Suspension Plasma Spray (in Korean)," J. Kor. Powd. Metall. Inst., 20 [6] 453-59 (2013). https://doi.org/10.4150/KPMI.2013.20.6.453
  25. W. J. Lee, Y. S. Oh, S. M. Lee, H. T. Kim, D.-S. Lim, and S. Kim, "Fabrication and Characterization of 7.5 wt.% $Y_2O_{3^-}ZrO_2$ Thermal Barrier Coatings Deposited by Suspension Plasma Spray (in Korean)," J. Korean Ceram. Soc., 51 [6] 598-604 (2014). https://doi.org/10.4191/kcers.2014.51.6.598
  26. C.-S. Kwon, S.-M. Lee, Y.-S. Oh, H.-T. Kim, B.-K. Jang, and S. Kim, "Structure and Thermal Conductivity of Thermal Barrier Coatings in Lanthanum/Gadolinium Zirconate System Fabricated Via Suspension Plasma Spray (in Korean)," J. Kor. Inst. Surf. Eng., 47 [6] 316-22 (2014). https://doi.org/10.5695/JKISE.2014.47.6.316
  27. N. Curry, Z. Tang, N. Markocsan, and P. Nylen, "Influence of Bond Coat Surface Roughness on the Structure of Axial Suspension Plasma Spray Thermal Barrier Coatings - Thermal and Lifetime Performance," Surf. Coat. Technol., 268 15-23 (2015). https://doi.org/10.1016/j.surfcoat.2014.08.067
  28. C. Kittel and P. McEuen, "Introduction to Solid State Physics, 8th ed.," pp. 125-8. Wiley New York, USA. (1986).