DOI QR코드

DOI QR Code

알루미늄-실리콘 공융 조성 합금 페이스트를 이용한 국부 후면 전계 태양전지 특성 분석

Properties of Silicon Solar Cells with Local Back Surface Field Fabricated by Aluminum-Silicon Eutectic Alloy Paste

  • 최재욱 (고려대학교 신소재공학과) ;
  • 박성은 (고려대학교 신소재공학과) ;
  • 배수현 (고려대학교 신소재공학과) ;
  • 김성탁 (고려대학교 신소재공학과) ;
  • 박세진 (고려대학교 신소재공학과) ;
  • 박효민 (고려대학교 신소재공학과) ;
  • 강윤묵 (고려대학교 그린스쿨대학원 에너지환경정책기술학과) ;
  • 이해석 (고려대학교 그린스쿨대학원 에너지환경정책기술학과) ;
  • 김동환 (고려대학교 신소재공학과)
  • Choi, Jae-Wook (Department of Materials Science and Engineering, Korea University) ;
  • Park, Sungeun (Department of Materials Science and Engineering, Korea University) ;
  • Bae, Soohyun (Department of Materials Science and Engineering, Korea University) ;
  • Kim, Seongtak (Department of Materials Science and Engineering, Korea University) ;
  • Park, Se Jin (Department of Materials Science and Engineering, Korea University) ;
  • Park, Hyomin (Department of Materials Science and Engineering, Korea University) ;
  • Kang, Yoonmook (KU.KIST Green School, Graduate School of Energy and Environment, Korea University) ;
  • Lee, Hae-Seok (KU.KIST Green School, Graduate School of Energy and Environment, Korea University) ;
  • Kim, Donghwan (Department of Materials Science and Engineering, Korea University)
  • 투고 : 2016.09.08
  • 심사 : 2016.09.19
  • 발행 : 2016.12.31

초록

Characteristic of aluminum-silicon alloy paste which is applied on the rear side of PERC cell was investigated. The paste was made by aluminum-silicon alloy with eutectic composition to avoid the formation of void which is responsible for the degradation of the open-circuit voltage. Also, the glass frit component of the paste was changed to improve the adhesion of aluminum-silicon paste. We observed the formation of void and local back surface field between aluminum electrode and silicon base by SEM. The light IV, quantum efficiency and reflectance of the solar cells were characterized and compared for each paste.

키워드

참고문헌

  1. International Energy Agency, "Technology roadmap solar photovoltaic energy", 2014.
  2. Kim, K., Dhungel, S. K., Gangopadhyay, U., Yoo, J., Seok, C. W., and Yi, J. "A novel approach for co-firing optimization in RTP for the fabrication of large area mc-Si solar cell." Thin solid films, Vol. 511, pp. 228-234, 2006.
  3. Noel, S., H. Lautenschlager, and J. C. Muller. "Highest efficiency rapid thermal processed multicrystalline silicon solar cells." Progress in Photovoltaics: Research and Applications, Vol. 9, No. 2, pp. 41-47, 2001. https://doi.org/10.1002/pip.353
  4. Meemongkolkiat, V., Nakayashiki, K., Kim, D. S., Kopecek, R., and Rohatgi, A. "Factors limiting the formation of uniform and thick aluminum-back-surface field and its potential." Journal of the Electrochemical Society, Vol. 153, No. 1, pp. G53-G58, 2006. https://doi.org/10.1149/1.2129106
  5. Chen, J., Tey, Z. H. J., Du, Z. R., Lin, F., Hoex, B., and Aberle, A. G. "Investigation of screen-printed rear contacts for aluminum local back surface field silicon wafer solar cells." IEEE Journal of Photovoltaics, Vol. 3, No. 2, pp. 690-696, 2013. https://doi.org/10.1109/JPHOTOV.2013.2239701
  6. Chen, Y., Hui S., and Pietro P. A. "Analysis of recombination losses in screen-printed aluminum-alloyed back surface fields of silicon solar cells by numerical device simulation." Solar Energy Materials and Solar Cells, Vol. 120, pp. 356-362, 2014. https://doi.org/10.1016/j.solmat.2013.05.051
  7. Horbelt, R., Ebert, S., Ulbikaite, V., Hahn, G., Job, R., and Terheiden, B. "Al-density variation as one driving force for void formation in PERC solar cells." physica status solidi (RRL)-Rapid Research Letters, 2016.
  8. Lauermann, T., Frohlich, B., Hahn, G., and Terheiden, B. "Diffusion-based model of local Al back surface field formation for industrial passivated emitter and rear cell solar cells." Progress in Photovoltaics: Research and Applications, Vol. 23, No. 1, pp. 10-18, 2015. https://doi.org/10.1002/pip.2388
  9. Park, S., Song, J., Tark, S. J., Kim, Y. D., Choi, C. J., Kwon, S., Yoon, S., Son, C. S. and Kim, D. "Investigation of Al back contacts and BSF formation by in situ TEM for silicon solar cells." Progress in Photovoltaics: Research and Applications, Vol. 22, No. 8, pp. 863-869, 2014. https://doi.org/10.1002/pip.2322
  10. Urrejola, E., Peter, K., Plagwitz, H., and Schubert, G. "Distribution of silicon in the aluminum matrix for rear passivated solar cells." Energy Procedia, Vol. 8, pp. 331-336, 2011. https://doi.org/10.1016/j.egypro.2011.06.145
  11. Murray, J. L., and A. J. McAlister. "The Al-Si (aluminum-silicon) system." Bulletin of alloy phase diagrams, Vol. 5, No. 1, pp. 74-84, 1984. https://doi.org/10.1007/BF02868729
  12. Rauer, M., Woehl, R., Ruhle, K., Schmiga, C., Hermle, M., Horteis, M., and Biro, D. "Aluminum alloying in local contact areas on dielectrically passivated rear surfaces of silicon solar cells." IEEE Electron Device Letters, Vol. 32, No. 7, pp. 916-918, 2011. https://doi.org/10.1109/LED.2011.2143385
  13. Kofstad, P., "Nonstoichiometry, diffusion, and electrical conductivity in binary metal oxides." New York: Wiley-Interscience, 1972.
  14. Kim, I., Shin, H. S., Yeo, D. H., and Jeong, D. Y. "The Effects of Composition on the Interface Resistance in Bi-System Glass Frit." Journal of the Korean Institute of Electrical and Electronic Material Engineers, Vol. 26, No. 12, pp. 858-862, 2013. https://doi.org/10.4313/JKEM.2013.26.12.858
  15. Rauer, M., Schmiga, C., Glatthaar, M., and Glunz, S. W. "Alloying from screen-printed aluminum pastes containing boron additives." IEEE Journal of Photovoltaics, Vol. 3, No. 1, pp. 206-211, 2013. https://doi.org/10.1109/JPHOTOV.2012.2217113