References
- Al-Shalabi, E.W., Sepehrnoori, K. and Delshad, M. (2015), "Numerical simulation of the LSWI effect on hydrocarbon recovery from carbonate rocks", Petroleum Science and Technology, 33(5), 595-603. https://doi.org/10.1080/10916466.2014.1003940
- Asadollahfardi, G., Khodadi, A. and Javadifar, N. (2013), "UTCHEM model application for prediction of crude oil removal from contaminated sand columns", J. Geol. Soc. India, 82(6), 712-718. https://doi.org/10.1007/s12594-013-0209-1
- Bear, J. (1979), Hydraulics of Groundwater. New York: McGraw-Hill.
- Bernardez, L.A., Therrien, R., Lefebvre, R. and Martel, R. (2009), "Simulating the injection of micellar solutions to recover diesel in a sand column", J. Contamin. Hydrol., 103(3), 99-108. https://doi.org/10.1016/j.jconhyd.2008.09.009
- Brown, C.L., Pope, G.A., Abriola, L.M. and Sepehrnoori, K. (1994), "Simulation of surfactant-enhanced aquifer remedition", Water Resource. Res., 30(11), 2959-2977. https://doi.org/10.1029/94WR01458
- Christ, J.A., Lemke, L.D. and Abriola, L.M. (2005), "Comparison of two-dimensional and three-dimensional simulations of dense nonaqueous phase liquids (DNAPLs): Migration and entrapment in a nonuniform permeability field", Water Resource. Res., 41(1), W01007.
- Couto, H.J.B., Massarani, G., Biscaia, E.C. and Sant'Anna, G.L. (2009), "Remediation of sandy soils using surfactant solutions and foams", J. Haz. Mater., 164(2), 1325-1334. https://doi.org/10.1016/j.jhazmat.2008.09.129
- Delshad, M., Pope, G.A. and Sepehrnoori, K. (1996), "A compositional simulator for modeling surfactant enhanced aquifer remediation, 1 formulation", J. Contamin. Hydrol., 23(4), 303-327. https://doi.org/10.1016/0169-7722(95)00106-9
- Deshpande, S., Shiau, B.J., Wade, D., Sabatini, D.A. and Harwell, J.H. (1999), "Surfactant selection for enhancing ex situ soil washing", Water Res., 33(2), 351-360. https://doi.org/10.1016/S0043-1354(98)00234-6
- Francy, D.S., Thomas, J.M., Raymond, R.L. and Ward, C.H. (1991), "Emulsification of hydrocarbons by subsurface bacteria", J. Indust. Microbiol., 8(4), 237-245. https://doi.org/10.1007/BF01576061
- Khalladi, R., Benhabiles, O., Bentahar, F. and Moulai-Mostefa, N. (2009), "Surfactant remediation of diesel fuel polluted soil", J. Haz. Mater., 164(2), 1179-1184. https://doi.org/10.1016/j.jhazmat.2008.09.024
- Krause, P., Boyle, D.P. and Base, F. (2005), "Comparison of different efficiency criteria for hydrological model assessment", Adv. Geosci., 5, 89-97. https://doi.org/10.5194/adgeo-5-89-2005
- Lee, K.S. (2010), "Numerical simulation of surfactant-enhanced remediation of heterogeneous aquifer contaminated with nonaqueous phase liquids", J. Mater. Cycle. Waste Manage., 12(3), 193-203. https://doi.org/10.1007/s10163-010-0288-7
- Ouyang, Y., Cho, J.S. and Mansell, R.S. (2002), "Simulated formation and flow of microemulsions during surfactant flushing of contaminated soil", Water Res., 36(1), 33-40. https://doi.org/10.1016/S0043-1354(01)00193-2
- Qin, X.S., Huang, G.H., Chakma, A., Chen, B. and Zeng, G.M. (2007), "Simulation-based process optimization for surfactant-enhanced aquifer remediation at heterogeneous DNAPL-contaminated sites", Sci. Tot. Environ., 381(1), 17-37. https://doi.org/10.1016/j.scitotenv.2007.04.011
- Roeder, E. and Falta, R.W. (2001), "Modeling unstable alcohol flooding of DNAPL-contaminated columns", Adv. Water Resource., 24, 803-819. https://doi.org/10.1016/S0309-1708(00)00072-5
- Saeidnia, S., Asadollahfardi, G. and Khodadadi, D.A. (2016), "Simulation of adsorption of antimony on zero-valent iron nanoparticles coated on the industrial minerals (kaolinite, bentonite and perlite) in mineral effluent", Desalin. Water Treat., 57(47), 22321-22328. https://doi.org/10.1080/19443994.2015.1130656
- Salehian, E. (2007), "Remediation of diesel contaminated soil by anionic surfactant. Dissertation", Tarbiat Modares University, Tehran.
- Schaerlaekens, J., Mertens, J., Van Linden, J., Vermeiren, G., Carmeliet, J. and Feyen, J. (2006), "A multi-objective optimization framework for surfactant-enhanced remediation of DNAPL contaminations", J. Contamin. Hydrol., 86(3), 176-194. https://doi.org/10.1016/j.jconhyd.2006.03.002
- St-Pierre, C., Martel, R., Gabriel, U., Lefebrvre, R., Robert, T. and Hawari, J. (2004), "TCE recovery mechanisms using micellar and alcohol solutions:phase diagrams and sand column experiments", J. Contamin. Hydrol., 71(1),155-192. https://doi.org/10.1016/j.jconhyd.2003.09.010
- Urum, K., Grigson, S., Pekdemir, T. and McMenamy, S. (2006), "A comparison of the efficiency of different surfactants for removal of crude oil from contaminated soils", Chemosphere, 62, 1403-1410. https://doi.org/10.1016/j.chemosphere.2005.05.016
- Van Dyke, M.I., Couture, P., Brauer, M., Lee, H. and Trevors, J.T. (1993), "Pseudomonas aeruginosa UG2 rhamnolipid biosurfactants: structural characterization and their use in removing hydrophobic compounds from soil", Can. J. Microbiol., 39(11), 1071-1078. https://doi.org/10.1139/m93-162
- Vreysen, S. and Maes, A. (2005), "Remediation of a diesel contaminated, sandy-loam soil using low concentrated surfactant solutions", J. Soil. Sediment., 5(4), 240-244. https://doi.org/10.1065/jss2005.10.146
- Zhu, K., Hart, W. and Yang, J. (2005), "Remediation of petroleum-contaminated loess soil by surfactant-enhanced flushing technique", J. Environ. Sci. Hlth., Part A: Toxic Hazardous Substances and Environmental Engineering, 40, 1877-1893. https://doi.org/10.1080/10934520500183899
Cited by
- An Implicit Finite Difference Model for Electrokinetic Remediation of Cd-Spiked Kaolinite Under Acid-Enhanced and Unenhanced Conditions pp.1573-2967, 2018, https://doi.org/10.1007/s10666-018-9610-x
- Numerical Study of Droplet Dynamics on a Solid Surface with Insoluble Surfactants vol.35, pp.24, 2019, https://doi.org/10.1021/acs.langmuir.9b00495