• Title/Summary/Keyword: diesel

Search Result 4,054, Processing Time 0.025 seconds

Power and Emission Characteristics of DI Diesel Engine with a Soybean Bio-diesel Fuel (바이오디젤유를 사용한 직접분사식 디젤엔진의 출력성능 및 배출가스 특성)

  • Choi, B.C.;Lee, C.H.;Park, H.J.
    • Journal of Power System Engineering
    • /
    • v.6 no.3
    • /
    • pp.11-16
    • /
    • 2002
  • This paper describes the power performance and emission characteristics of the high speed direct injection diesel engine (2.9 litter displacements) driven by soybean oil asknown a bio diesel fuel. The results were compared to diesel fuel with blending bio diesel fuels. The soybean bio diesel fuel was added in the diesel fuel in concentration varying from 25% to 75% volume rates. We measured the emissions according to ECE 13 mode and full load, fixedengine speed. When the 25% bio diesel fuel was used, NOx emission at the ECE 13 mode test slightly decreased compared with diesel base engine. Over engine speed of 2000 rpm, the level of unburned hydrocarbon(HC) and carbon monoxide(CO) were the same to the diesel engine. Smoke emission decreased asthe blending bio diesel fuel rate increased.

  • PDF

A Study on the Injection Characteristics of Diesel-water Emulsion Fuels according to Compositions (디젤-워터 에멀젼 연료의 조성에 따른 분무 특성에 관한 연구)

  • Woo, Seungchul;Kim, Hyungik;Park, Jangsoo;Lee, Kihyung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.23 no.3
    • /
    • pp.263-270
    • /
    • 2015
  • Using Diesel-Water Emulsion fuel in commercial diesel engine can reduce NOx and soot when it is injected through the injector. Because water in Diesel-Water Emulsion fuel is vaporized ahead of diesel particle and it cause decrease of combustion temperature. Furthermore, research about the possibility of applicating Diesel-Water Emulsion fuels to commercial diesel engine is demanded in order to prove that Diesel-Water Emulsion fuel is able to apply commercial diesel engine without any replacement of equipments. This research analyzed applicable possibility of Diesel-Water Emulsion fuels to commercial diesel engine's fuel injection system refering injection and spray characteristics. In this research, there are 3 experiments, that is injection quantity, spray visualization, and injection rate. Diesel-Water Emulsion fuel has less injection quantities compared to diesel fuel, and spray penetration length is more longer than diesel. Furthermore, emulsion fuels have less dispersed than diesel fuel. In conclusion, comparing with diesel fuel with only spray characteristics, Diesel-Water Emulsion fuel has bad effects about dispersion and vaporization.

Increase of diesel car raises health risk in spite of recent development in engine technology

  • Leem, Jong Han;Jang, Young-Kee
    • Environmental Analysis Health and Toxicology
    • /
    • v.29
    • /
    • pp.9.1-9.3
    • /
    • 2014
  • Diesel exhaust particles (DEP) contain elemental carbon, organic compounds including Polyaromatic hydrocarbons (PAHs), metals, and other trace compounds. Diesel exhaust is complex mixture of thousands of chemicals. Over forty air contaminants are recognized as toxicants, such as carcinogens. Most diesel exhaust particles have aerodynamic diameters falling within a range of 0.1 to $0.25{\mu}m$. DEP was classified as a definite human carcinogen (group 1) by the International Agency for Research on Cancer at 2012 based on recently sufficient epidemiological evidence for lung cancer. Significant decreases in DEP and other diesel exhaust constituents will not be evident immediately, and outworn diesel car having longer mileage still threatens health of people in spite of recent remarkable development in diesel engine technology. Policy change in South Korea, such as introduction of diesel taxi, may raise health risk of air pollution in metropolitan area with these limitations of diesel engine. To protect people against DEP in South Korea, progressive strategies are needed, including disallowance of diesel taxi, more strict regulation of diesel engine emission, obligatory diesel particulate filter attachment in outworn diesel car, and close monitoring about health effects of DEP.

Feasibility Study of Using Wood Pyrolysis Oil in a Diesel Engine (목질 열분해유의 디젤 엔진 적용성 연구)

  • Lee, Seok-Hwan;Park, Jun-Hyuk;Lim, Gi-Hun;Choi, Young;Woo, Se-Jong;Kang, Kern-Yong
    • Journal of ILASS-Korea
    • /
    • v.16 no.3
    • /
    • pp.152-158
    • /
    • 2011
  • Fast pyrolysis of biomass is one of the most promising technologies for converting biomass to liquid fuels. The pyrolysis oil, also known as the bio crude oil (BCO), have been regarded as an alternative fuel for petroleum fuels to be used in diesel engine. However, the use of BCO in diesel engine requires modifications due to low energy density, high water contents, low acidity, and high viscosity of the BCO. One of the easiest way to adopt BCO to diesel engine without modifications is the use of BCO/diesel emulsions. In this study, a diesel engine operated with diesel, bio diesel (BD), and BCO/diesel emulsion was experimentally investigated. Performance and emission characteristics of a diesel engine fuelled by BCO/diesel emulsion were examined. Results showed that stable engine operation was possible with emulsion and engine output power was comparable to diesel and bio diesel operation. Long term validation of adopting BCO in diesel engine is still needed because the oil is acid, with consequent problems of corrosion especially in the injection system.

Combustion Characteristic of Non-esterified Bio-diesel Oil at Lower Common Rail Pressure (저 커먼레일 압력에서 비에스테르화 바이오 디젤유의 연소특성)

  • Lee, Sang-Deuk;Koh, Dae-Kwon;Jung, Suk-Ho
    • Journal of Power System Engineering
    • /
    • v.17 no.6
    • /
    • pp.11-17
    • /
    • 2013
  • Esterified bio-diesel oil is normally used as blend oil of 3% that and 97% diesel fuel in Korea. Since specifics of it is similar to that of diesel fuel, availability of non-esterified bio-diesel oil that has a lower expenses of manufacturing is worthy of attention. However, bio-diesel oil has a demerit which it emits typically more NOx emission than diesel fuel. In this study, characteristic tests using blending oil with 95% gas oil and 5% bio-diesel oil were achieved at lower common rail pressure in order to improve this demerit. It was noticed that non-esterified bio-diesel oil has more similar characteristics to diesel fuel than esterified bio-diesel oil and it emits more NO emission by fuel NO mechanism.

A Study on the Utilization of Fish Oil in a Diesel Engine for Fishing Boats (어선용 디젤기계에 있어서 어유이용에 관한 연구)

  • 서정주
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.28 no.1
    • /
    • pp.45-52
    • /
    • 1992
  • In this paper, combustion characteristics and engine performance varying with blending rate of fish oil using five test fuels, e.g.pure diesel oil and four types of sardine-oil-blended diesel oils, their blending rates by weight being 20%, 40%, 60% and 80% respectively, and operating condition of engine, were investigated experimentally both in the constant volume combustion bomb and in the engine. The results are summarized as follows: 1) In the bomb, the influence of temperature on ignition delay of sardine-oil-blended diesel oils was larger than that of pure diesel oil, and it tended to increase as the blending rate of fish oil increase sardine-oil-blended diesel oils. As far as the influence of pressure on ignition delay concerns, there was no significant difference with all the test fuels. 2) In the engine, the ignition delay of fish-oil- blended diesel oils was longer than that of pure diesel oil, and it tended to increase as the blending rate increases. In the bomb, the ignition delay in high temperature showed no significant difference between with pure diesel oil and with fish-oil-blended diesel oils, and it was especially short with 60% fish-oil-blended diesel oil. In low temperature, however, the delay became longer as the blending rate increase. 3) The combustion duration was shorter with fish-oil-blended diesel oils than with pure diesel oil and it became a little shorter as the blending rate increases. 4) The rate of fuel consumption showed no significant difference between with fish-oil-blended diesel oils and with prue diesel oil, although calorific value of fish oil was lower than that of diesel oil. 5) Smoke density in exhaust gas was lower with fish-oil-blended diesel oils than with pure diesel oil and the higher the blending rate was, the lower the smoke density became.

  • PDF

Performance and Emission Studies in a DI Diesel Engine Using Wood Pyrolysis Oil-Bio Diesel Emulsion (목질계 열분해유-바이오 디젤 유상액을 사용하는 직접분사식 디젤 엔진의 엔진성능 및 배기특성에 관한 연구)

  • Lee, Seokhwan
    • Journal of ILASS-Korea
    • /
    • v.17 no.4
    • /
    • pp.197-204
    • /
    • 2012
  • The vast stores of biomass available in the worldwide have the potential to displace significant amounts of fuels that are currently derived from petroleum sources. Fast pyrolysis of biomass is one of possible paths by which we can convert biomass to higher value products. The wood pyrolysis oil (WPO), also known as the bio crude oil (BCO), has been regarded as an alternative fuel for petroleum fuels to be used in diesel engine. However, the use of WPO in a diesel engine requires modifications due to low energy density, high water contents, low acidity, and high viscosity of the WPO. One of the easiest way to adopt WPO to diesel engine without modifications is emulsification of WPO with diesel or bio diesel. In this study, a DI diesel engine operated with diesel, bio diesel (BD), WPO/BD emulsion was experimentally investigated. Performance and gaseous & particle emission characteristics of a diesel engine fuelled by WPO/BD emulsion were examined. Results showed that stable engine operation was possible with emulsion and engine output power was comparable to diesel and bio diesel operation.

Performance and Emission Studies in a DI Diesel Engine Fuelled with Diesel-Pyrolysis Oil Emulsion (디젤-열분해유 유상액을 사용하는 직접분사식 디젤 엔진의 엔진성능 및 배기특성에 관한 연구)

  • Lee, Seokhwan;Kim, Hoseung;Kim, Taeyoung;Woo, Sejong;Kang, Kernyong
    • Journal of ILASS-Korea
    • /
    • v.19 no.2
    • /
    • pp.55-63
    • /
    • 2014
  • Pyrolysis oil (PO), also known as Bio crude oil (BCO), has the potential to displace significant amounts of fuels that are currently derived from petroleum sources. PO has been regarded as an alternative fuel for petroleum fuels to be used in diesel engine. However, the use of PO in a diesel engine requires modifications due to low energy density, high water contents, low acidity, and high viscosity of the PO. One of the easiest way to adopt PO to diesel engine without modifications is emulsification of PO with the fuels that has higher cetane number. However, PO that has high amount of polar chemicals is immiscible with non polar hydrocarbons of diesel. Thus, to stabilize a homogeneous phase of diesel-PO blends, a proper surfactant should be used. In this study, a DI diesel engine operated with diesel and diesel-PO emulsions was experimentally investigated. Performance and gaseous & particle emission characteristics of a diesel engine fuelled by diesel-PO emulsions were examined. Results showed that stable engine operation was possible with the emulsions and engine output power was comparable to diesel operation.

An Experimental Study on Emission Reduction by Low Sulfur Diesel Fuel in Diesel Oxidation Catalyst of Heavy Duty Diesel Engine (대형디젤기관의 디젤산화촉매장치에서 저유황 경유에 의한 배출가스 저감에 관한 실험적 연구)

  • 요용석;강호인;한영출
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.3
    • /
    • pp.138-142
    • /
    • 1998
  • Among aftertreatment devices which reduce exhaust gas of diesel engine, diesel oxidation catalyst(DOC) with high reduction efficiency for gaseous matter and particulate matter is now being studied actively. In this study, an experiment was conducted to analyze the effects of low sulfur diesel fuel in heavy duty diesel engine equipped with DOC. We tested to estimate change of engine performance for the low and high sulfur diesel fuels in a 11,000cc diesel engine equipped with DOC. We conducted test to estimate the reduction efficiency of exhaust gas in D-13 mode of heavy duty diesel regulation mode and in smoke opacity mode for two samples of high sulfur content (0.2%) and low sulfur content(0.05%)

  • PDF

Characteristics of Exhaust Emissions from a Heavy-duty Diesel Engine (대형디젤엔진의 오염물질 배출특성)

  • 엄명도;류정호;이종태;임철수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.9
    • /
    • pp.20-27
    • /
    • 1999
  • The proportion of diesel vehicle is very high in this country . PM and NOx emitted from diesel-posered vehicle is severely ;affecting to be air quality . Especially, diesel particulate matters(DPM) including black smoke are hazardous air pollutants to human health and environment. In order to reduce the exhaust emissions from diesel engines, it is necessary to analyze the characteristics of exhaust emissions from diesel engines in various driving conditions. Recently, there are occasion to increase the fuel consumption rate to engine power up. So, in this study we have tested a diesel engine detached from in use -diesel vehicle and analyzed exhaust emission by driving condition and fuel dispersion rate. From this results, we will prepare the comprehensive management plan for exhaust emissions from diesel vehicles and contribute to the improvement of air pollution in urban area.

  • PDF