DOI QR코드

DOI QR Code

Insertion Mutation in HMG-CoA Lyase Increases the Production Yield of MPA through Agrobacterium tumefaciens-Mediated Transformation

  • Dong, Yuguo (State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology) ;
  • Zhang, Jian (State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology) ;
  • Xu, Rui (State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology) ;
  • Lv, Xinxin (State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology) ;
  • Wang, Lihua (State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology) ;
  • Sun, Aiyou (State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology) ;
  • Wei, Dongzhi (State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology)
  • Received : 2016.03.18
  • Accepted : 2016.07.29
  • Published : 2016.11.28

Abstract

Mycophenolic acid (MPA) is an antibiotic produced by Penicillium brevicompactum. MPA has antifungal, antineoplastic, and immunosuppressive functions, among others. ${\beta}-Hydroxy-{\beta}-methylglutaryl-CoA$ (HMG-CoA) lyase is a key enzyme in the bypass metabolic pathway. The inhibitory activity of HMG-CoA lyase increases the MPA biosynthetic flux by reducing the generation of by-products. In this study, we cloned the P. brevicompactum HMG-CoA lyase gene using the thermal asymmetric interlaced polymerase chain reaction and gene walking technology. Agrobacterium tumefaciens-mediated transformation (ATMT) was used to insert a mutated HMG-CoA lyase gene into P. brevicompactum. Successful insertion of the HMG-CoA lyase gene was confirmed by hygromycin screening, PCR, Southern blot analysis, and enzyme content assay. The maximum MPA production by transformants was 2.94 g/l. This was 71% higher than wild-type ATCC 16024. Our results demonstrate that ATMT may be an alternative practical genetic tool for directional transformation of P. brevicompactum.

Keywords

References

  1. Allison AC. 2000. Immunosuppressive drugs: the first 50 years and a glance forward. Immunopharmacology 47: 63-83. https://doi.org/10.1016/S0162-3109(00)00186-7
  2. An G, Ebert PR, Mitra A, Ha SB. 1988. Binary vectors, pp. 1-19. In Gelvin SB, Schilperoort RA (eds.). Plant Molecular Biology Manual. Kluwer Academic Publishers, Great Britain.
  3. Ando K, Suzuki S, Tamura G, Arima K. 1968. Antiviral activity of mycophenolic acid. Studies on antiviral and antitumor antibiotics. J. Antibiot. 21: 649-652. https://doi.org/10.7164/antibiotics.21.649
  4. Bedford CT, Knittel P, Money T, Phillips GT, Salisberg P. 1973. Biosynthesis of mycophenolic acid. Can. J. Chem. 51: 694-697.
  5. Bentley R. 2000. Mycophenolic acid: a one hundred year odyssey from antibiotic to immunosuppressant. Chem. Rev. 100: 3801-3826. https://doi.org/10.1021/cr990097b
  6. Bundock P, den Dulk-Ras A, Beijersbergen A, Hooykaas PJ. 1995. Trans-kingdom T-DNA transfer from Agrobacterium tumefaciens to Saccharomyces cerevisiae. EMBO J. 14: 3206-3214.
  7. Chen X, Stone M, Schlagnhaufer C, Romaine CP. 2000. A fruiting body tissue method for efficient Agrobacteriummediated transformation of Agaricus bisporus. Appl. Environ. Microbiol. 66: 4510-4513. https://doi.org/10.1128/AEM.66.10.4510-4513.2000
  8. Covert S, Kapoor P, Lee M, Briley A, Nairn C. 2001. Agrobacterium tumefaciens-mediated transformation of Fusarium circinatum. Mycol. Res. 105: 259-264. https://doi.org/10.1017/S0953756201003872
  9. de-Groot M, Bundock P, Hooykaas P, Beijersbergen A. 1998. Agrobacterium tumefaciens-mediated transformation of filamentous fungi. Nat. Biotechnol. 16: 839-842. https://doi.org/10.1038/nbt0998-839
  10. Ding Y, Liang S, Lei J, Chen L, Kothe E, Ma A. 2011. Agrobacterium tumefaciens mediated fused egfp-hph gene expression under the control of gpd promoter in Pleurotus ostreatus. Microbiol. Res. 166: 314-322. https://doi.org/10.1016/j.micres.2010.07.001
  11. Dong YG, Xu R, Wang LH, Zhang J, Bai CG, Sun AY, Wei DZ. 2015. A combined feeding strategy for enhancing mycophenolic acid production by fed-batch fermentation in Penicillium brevicompactum. Process. Biochem. 50: 336-340. https://doi.org/10.1016/j.procbio.2014.12.023
  12. Eugui EM, Allison AC. 1993. Immunosuppressive activity of mycophenolate mofetil. Ann. N.Y. Acad. Sci. 685: 309-329. https://doi.org/10.1111/j.1749-6632.1993.tb35881.x
  13. Fang W, Zhang Y, Yang X, Zheng X, Duan H, Li Y, Pei Y. 2004. Agrobacterium tumefaciens-mediated transformation of Beauveria bassiana using an herbicide resistance gene as a selection marker. J. Invertebr. Pathol. 85: 18-24. https://doi.org/10.1016/j.jip.2003.12.003
  14. Hooykaas PJJ, Roobol C, Schilperoort RA. 1979. Regulation of the transfer of Ti-plasmids of Agrobacterium tumefaciens. J. Gen. Microbiol. 110: 99-109. https://doi.org/10.1099/00221287-110-1-99
  15. Ji LH, Jiang Z D, Liu YB, Koh CMJ, Zhang LH. 2010. A simplified and efficient method for transformation and gene tagging of Ustilago maydis using frozen cells. Fungal Genet. Biol. 47: 279-287. https://doi.org/10.1016/j.fgb.2010.01.002
  16. Krysan PJ, Young JC, Sussman MR. 1999. T-DNA a s an insertional mutagen in Arabidopsis. Plant Cell 11: 2283-2290. https://doi.org/10.1105/tpc.11.12.2283
  17. Li M, Gong X, Zheng J, Jiang D, Fu Y, Hou M. 2005. Transformation of Coniothyrium minitans, a parasite of Sclerotinia sclerotiorum, with Agrobacterium tumefaciens. FEMS Microbiol. Lett. 243: 323-329. https://doi.org/10.1016/j.femsle.2004.12.033
  18. Liu YG, Mitsukawa N, Oosumi T, Whittier RF. 1995. Efficient isolation and mapping of Arabidopsis thaliana T-DNA insert junctions by thermal asymmetric interlaced PCR. Plant J. 8: 457-463. https://doi.org/10.1046/j.1365-313X.1995.08030457.x
  19. Lu szczynska P, Pawinski T. 2015. Therapeutic drug monitoring of mycophenolic acid in lupus nephritis: a review of current literature. Ther. Drug Monit. 37: 711-717. https://doi.org/10.1097/FTD.0000000000000223
  20. Maruthachalam K, Nair V, Rho HS, Choi J, Kim S, Lee YH. 2008. Agrobacterium tumefaciens-mediated transformation in Colletotrichum falcatum and C. acutatum. J. Microbiol. Biotechnol. 18: 234-241.
  21. Mc Cormac AC, Elliott MC, Chen DF. 1998. A simple method for the production of highly competent cells of Agrobacterium for transformation via electroporation. Mol. Biotechnol. 9: 155-159. https://doi.org/10.1007/BF02760816
  22. Liu M, Zhang P, Cui XL, Ren X, Zhang H. 2006. Studies on the breeding by ion implantation and cultivation of mycophenolic acid producing strain. Acta Microbiol. Sin. 46: 816-819.
  23. Meza-Avina ME, Ordonez M, Fernandez-Zertuche M, Rodriguez-Fragoso L, Reyes-Esparza J, de Los Rios-Corsino AA. 2005. Synthesis of some monocyclic analogues of mycophenolic acid via the Johnson ortho ester Claisen rearrangement. Bioorg. Med. Chem. 13: 6521-6528. https://doi.org/10.1016/j.bmc.2005.07.013
  24. Michielse CB, Hooykaas PJ, Hondel CA, Ram AF. 2005. Agrobacterium-mediated transformation as a tool for functional genomics in fungi. Curr. Genet. 48: 1-17. https://doi.org/10.1007/s00294-005-0578-0
  25. Muth WL, Nash CH. 1975. Biosynthesis of mycophenolic acid: purification and characterization of S-adenosyl-Lmethionine: demethylmycophenolic acid O-methyltransferase. Antimicrob. Agents Chemother. 8: 321-327. https://doi.org/10.1128/AAC.8.3.321
  26. Marquardt PT, Muller-Hermelink HK. 1990. Characteristics of T-lymphocytes infiltrating human B-cell lymphomas. Environ. Health Perspect. 88: 233-235. https://doi.org/10.1289/ehp.9088233
  27. Ozaki H, Ishihara M, Kida T, Yamanaka S, Shibai H. 1987. Mycophenolic acid production by drug-resistant and methionine or glutamic-acid requiring mutants of Penicillium brevicompactum. Agric. Biol. Chem. 51: 2509-2514.
  28. Peng Y, Dong Y, Mahato RI. 2015. Synthesis and characterization of a novel mycophenolic acid-quinic acid conjugate serving as immunosuppressant with decreased toxicity. Mol. Pharm. 12: 4445-4453. https://doi.org/10.1021/acs.molpharmaceut.5b00639
  29. Piers KL, Heath JD, Liang X, Stephens KM, Nester EW. 1996. Agrobacterium tumefaciens-mediated transformation of yeast. Proc. Natl. Acad. Sci. USA 93: 1613-1618. https://doi.org/10.1073/pnas.93.4.1613
  30. Qin XT, Xu YF, Cheng ZB. 2005. Studies on mutagenesis and fermentation of mycophenolic acid producing strain. Chin. J. Antibiot. 30: 426-427.
  31. Rainiene T. 2005. Immunosuppression in the past and today. Acta Med. 12: 10-17.
  32. Sambrock J, Fritsch EF, Maniatis T. 1989. Molecular Cloning: A Laboratory Manual, 2nd Ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
  33. Sanchez O, Navarro RE, Aguirre J. 1998. Increased transformation frequency and tagging of developmental genes in Aspergillus nidulans by restriction enzyme-mediated integration (REMI). Mol. Gen. Genet. 258: 89-94. https://doi.org/10.1007/s004380050710
  34. Sollinger HW, Deierhoi MH, Belzer FO, Diethelm AG, Kauffman RS. 1992. RS-61443 - a phase I clinical trial and pilot rescue study. Transplantation 53: 428-432. https://doi.org/10.1097/00007890-199202010-00031
  35. Sullivan TD, Rooney PJ, Klein BS. 2002. Agrobacterium tumefaciens integrates transfer DNA into single chromosomal sites of dimorphic fungi and yields homokaryotic progeny from multinucleate yeast. Eukaryot. Cell 1: 895-905. https://doi.org/10.1128/EC.1.6.895-905.2002
  36. Tinland B. 1996. The integration of T-DNA in plant genomes. Trends Plant Sci. 1: 178-184. https://doi.org/10.1016/1360-1385(96)10020-0
  37. Vin okurova NG, Ivanushkina NE, Kochkina GA, Arinbasarov MU, Ozerskaya SM. 2005. Production of mycophenolic acid by fungi of the genus Penicillium link. Appl. Biochem. Microbiol. 41: 83-86. https://doi.org/10.1007/s10438-005-0015-7
  38. Wu JC. 1994. Mycophenolate mofetil: molecular mechanisms of action. Perspect. Drug Discov. Des. 2: 185-204. https://doi.org/10.1007/BF02171743
  39. Xu ZN, Yang ST. 2007. Production of mycophenolic acid by Penicillium brevicompactum immobilized in a rotating fibrousbed bioreactor. Enzyme Microb. Technol. 40: 623-628. https://doi.org/10.1016/j.enzmictec.2006.05.025
  40. Yang YJ, Lee I . 2008. Agrobactrium tumefaciens-mediated transformation of Monascus ruber. J. Microbiol. Biotechnol. 18: 754-758.
  41. Zeng F, Qin HQ, Xu WJ, Zheng MD, Hu HT, Shui H. 2016. Mycophenolic acid inhibits the phosphorylation of nuclear factor-kappaB and Akt in renal tubular epithelial cells. Mol. Med. Rep. 13: 560-564. https://doi.org/10.3892/mmr.2015.4526