• Title/Summary/Keyword: directional transformation

Search Result 78, Processing Time 0.027 seconds

The Three Directional Separable Processing Method for Double-Density Wavelet Transformation Improvement (이중 밀도 웨이브렛 변환의 성능 향상을 위한 3방향 분리 처리 기법)

  • Shin, Jong Hong
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.8 no.2
    • /
    • pp.131-143
    • /
    • 2012
  • This paper introduces the double-density discrete wavelet transform using 3 direction separable processing method, which is a discrete wavelet transform that combines the double-density discrete wavelet transform and quincunx sampling method, each of which has its own characteristics and advantages. The double-density discrete wavelet transform is nearly shift-invariant. But there is room for improvement because not all of the wavelets are directional. That is, although the double-density DWT utilizes more wavelets, some lack a dominant spatial orientation, which prevents them from being able to isolate those directions. The dual-tree discrete wavelet transform has a more computationally efficient approach to shift invariance. Also, the dual-tree discrete wavelet transform gives much better directional selectivity when filtering multidimensional signals. But this transformation has more cost complexity Because it needs eight digital filters. Therefor, we need to hybrid transform which has the more directional selection and the lower cost complexity. A solution to this problem is a the double-density discrete wavelet transform using 3 direction separable processing method. The proposed wavelet transformation services good performance in image and video processing fields.

Experiments for Wave Transformation of Regular and Irregular Waves over a Submerged Elliptic Shoal(I) : Non-breaking Conditions (타원형 수중천퇴상의 규칙파 및 불규칙파의 전파변형 실험(I):비쇄파조건)

  • 이종인;이정욱
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.14 no.3
    • /
    • pp.240-246
    • /
    • 2002
  • Hydraulic model experiments were conducted fur a series of regular and uni-directional irregular waves propagating over a submerged elliptic shoal. Two different sets of experiments have been studied; one considers regular wave transformation with no breaking, and the other considers uni-directional irregular wave with partial breaking on top of the shoal. The numerical experiments are also performed using a numerical model based on the parabolic approximation equation. The result of the numerical experiments are compared with that of hydraulic experiments.

Coordinate Calibration of the ODVS using Delta-bar-Delta Neural Network (Delta-bar-Delta 알고리즘을 이용한 ODVS의 좌표 교정)

  • Kim Do-Hyeon;Park Young-Min;Cha Eui-Young
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.3
    • /
    • pp.669-675
    • /
    • 2005
  • This paper proposes coordinates transformation and calibration algorithm using 3D parabolic coordinate transformation and delta-bar-delta neural algorithm for the omni-directional image captured by catadioptric camera. Experimental results shows that the proposed algorithm has accuracy and confidence in coordinate transformation which is sensitive to environmental variables.

Discussion of The Concept and Characteristic of "Gi Transformation(氣化)" in "Hwangjenaegyeong(黃帝內經)" (시론(试论) $\ll$내경(内经)$\gg$ "기화(气化)" 적개념여특점(的概念与特点))

  • Chen, Xi
    • Journal of Korean Medical classics
    • /
    • v.22 no.4
    • /
    • pp.261-264
    • /
    • 2009
  • Gi(氣) transformation theory is the foundation of Traditional Chinese Medicine[TCM]. This theory matured during the period of "Hwangjenaegyeong(黃帝內經)", and later in the history of TCM was a source of significant impact on the development process and direction of general medical theory. The concept of "gi transformation[氣化]" mainly originates from the definition of the three levels which are nature, the relationship between nature and human, and the body's own metabolism, and is used to describe the usage and the resulting changes of 'gi(氣)'. Gi transformation possesses six characteristics which are permanence, universality, representationalism, directional, variability, and orderliness. The research of the concept and characteristics of gi transformation[氣化] in "Hwangjenaegyeong" will help identify the important academic value and practical significance of the formation of the basic theory of TCM as the result of the gi transformation theory, and highlight the unique characteristics of TCM.

  • PDF

Dual-tree Wavelet Discrete Transformation Using Quincunx Sampling For Image Processing (디지털 영상 처리를 위한 Quincunx 표본화가 사용된 이중 트리 이산 웨이브렛 변환)

  • Shin, Jong Hong
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.7 no.4
    • /
    • pp.119-131
    • /
    • 2011
  • In this paper, we explore the application of 2-D dual-tree discrete wavelet transform (DDWT), which is a directional and redundant transform, for image coding. DDWT main property is a more computationally efficient approach to shift invariance. Also, the DDWT gives much better directional selectivity when filtering multidimensional signals. The dual-tree DWT of a signal is implemented using two critically-sampled DWTs in parallel on the same data. The transform is 2-times expansive because for an N-point signal it gives 2N DWT coefficients. If the filters are designed is a specific way, then the sub-band signals of the upper DWT can be interpreted as the real part of a complex wavelet transform, and sub-band signals of the lower DWT can be interpreted as the imaginary part. The quincunx lattice is a sampling method in image processing. It treats the different directions more homogeneously than the separable two dimensional schemes. Quincunx lattice yields a non separable 2D-wavelet transform, which is also symmetric in both horizontal and vertical direction. And non-separable wavelet transformation can generate sub-images of multiple degrees rotated versions. Therefore, non-separable image processing using DDWT services good performance.

A Multilevel Model Integration for Collaborative Decision Making (협동적 의사결정을 위한 다단계 모형 통합)

  • 권오병;이건창
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.23 no.2
    • /
    • pp.103-129
    • /
    • 1998
  • Corporate level decision making with multiple decision makers in a consistent way is essential in Decision Support System. However, since the decision makers have different interests and knowledge, the models used by them are also different in their level of abstraction. This makes decision makers waste a lot of efforts for an integrated decision making. The purpose of this paper is to propose an integration mechanism so that collaborative decision making models may be used synthetically in multi-abstraction level. Models are classified as multimedia model, mathematical model, qualitative model, causal & directional model, causal model, directional model and relationship model according to the level of abstraction. The proposed integration mechanism consists of model interpretation phase. model transformation phase, and model integration phase. Specifically, the model transformation Phase is divided into (1) model tightening mode which gather information to make a model transformed into upper level model, and (2) model relaxing mode which makes lower level model. In the model integration phase, models of same level are to be integrated schematically. An illustrative M&A-decision example is given to show the possibility of the methodology.

  • PDF

Time Domain Analysis of a Tension Leg Platform in Multi-Directional Irregular Waves (다방향 불규칙파중의 인장계류식 해양구조물의 시간영역 해석)

  • Lee, Chang-Ho;Kim, Chuel-Hyun
    • Journal of Ocean Engineering and Technology
    • /
    • v.20 no.5 s.72
    • /
    • pp.36-41
    • /
    • 2006
  • The main object of this study is to develop an accurate and convenient method for the response analysis of offshore structures in real sea states. A numerical procedure is described for predicting the motion responses and tension variations of the ISSC TLP in multi-directional irregular waves. The developed numerical approach in the frequency domain is based on acombination of the three dimensional source distribution method, the dynamic response analysis method, and the spectral analysis method. Frequency domain analysis in the multi-directional irregular waves is expanded to a time domain analysis by using a convolution integral after obtaining the impulse response by Fourier transformation. The results of the comparison between responses in the frequency and time domain confirmed the validity of the proposed approach.

A Simple Resonant DC Link Snubber-Assisted Bi-directional Three-phase PWM Converter for Battery Energy Storage Systems

  • Hiraki, Eiji;Nakaoka, Mutsuo
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.2B no.3
    • /
    • pp.133-139
    • /
    • 2002
  • In this paper, a prototype of an active auxiliary quasi-resonant DC link (QRDCL) snubber assisted voltage source bidirectional power converter (AC to DC and DC to AC) operating at zero voltage soft-switching (BVS) PWM nlode is presented for a Battery Energy Storage System (BESS). The operating principle of this QRDCL circuit and multifunctional control-based converter system, including PWM inverter mode in which energy flows from the battery bank to the three-phase utility-grid in addition to an active PWM converter mode in which energy flows from the utility-grid to the battery banks are described respectively by the control implementation on the basis of d-q coordinate plane transformation. The multifunctional operation characteristics of this three-phase ZVS PWM bi-directional converter with QRDCL is demonstrated fer a BESS under the power conditioning and processing schemes of energy supply mode and energy storage mode, and compared with a conventional three-phase hard switching PWM bi-directional converter for a BESS. The effectiveness of the three-phase ZVS PWM hi-directional converter with QRDCL is proven via the simulation analysis.

Coordinate Calibration and Object Tracking of the ODVS (Omni-directional Image에서의 이동객체 좌표 보정 및 추적)

  • Park, Yong-Min;Nam, Hyun-Jung;Cha, Eui-Young
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.2
    • /
    • pp.408-413
    • /
    • 2005
  • This paper presents a technique which extracts a moving object from omni-directional images and estimates a real coordinates of the moving object using 3D parabolic coordinate transformation. To process real-time, a moving object was extracted by proposed Hue histogram Matching Algorithms. We demonstrate our proposed technique could extract a moving object strongly without effects of light changing and estimate approximation values of real coordinates with theoretical and experimental arguments.

  • PDF

Performance validation and application of a mixed force-displacement loading strategy for bi-directional hybrid simulation

  • Wang, Zhen;Tan, Qiyang;Shi, Pengfei;Yang, Ge;Zhu, Siyu;Xu, Guoshan;Wu, Bin;Sun, Jianyun
    • Smart Structures and Systems
    • /
    • v.26 no.3
    • /
    • pp.373-390
    • /
    • 2020
  • Hybrid simulation (HS) is a versatile tool for structural performance evaluation under dynamic loads. Although real structural responses are often multiple-directional owing to an eccentric mass/stiffness of the structure and/or excitations not along structural major axes, few HS in this field takes into account structural responses in multiple directions. Multi-directional loading is more challenging than uni-directional loading as there is a nonlinear transformation between actuator and specimen coordinate systems, increasing the difficulty of suppressing loading error. Moreover, redundant actuators may exist in multi-directional hybrid simulations of large-scale structures, which requires the loading strategy to contain ineffective loading of multiple actuators. To address these issues, lately a new strategy was conceived for accurate reproduction of desired displacements in bi-directional hybrid simulations (BHS), which is characterized in two features, i.e., iterative displacement command updating based on the Jacobian matrix considering nonlinear geometric relationships, and force-based control for compensating ineffective forces of redundant actuators. This paper performs performance validation and application of this new mixed loading strategy. In particular, virtual BHS considering linear and nonlinear specimen models, and the diversity of actuator properties were carried out. A validation test was implemented with a steel frame specimen. A real application of this strategy to BHS on a full-scale 2-story frame specimen was performed. Studies showed that this strategy exhibited excellent tracking performance for the measured displacements of the control point and remarkable compensation for ineffective forces of the redundant actuator. This strategy was demonstrated to be capable of accurately and effectively reproducing the desired displacements in large-scale BHS.