DOI QR코드

DOI QR Code

Acceptor Specificity of Amylosucrase from Deinococcus radiopugnans and Its Application for Synthesis of Rutin Derivatives

  • Kim, Myo-Deok (Graduate School of Biotechnology and Institute of Life Science and Resources, Kyung Hee University) ;
  • Jung, Dong-Hyun (Graduate School of Biotechnology and Institute of Life Science and Resources, Kyung Hee University) ;
  • Seo, Dong-Ho (Graduate School of Biotechnology and Institute of Life Science and Resources, Kyung Hee University) ;
  • Jung, Jong-Hyun (Graduate School of Biotechnology and Institute of Life Science and Resources, Kyung Hee University) ;
  • Seo, Ean-Jeong (Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University) ;
  • Baek, Nam-In (Graduate School of Biotechnology and Institute of Life Science and Resources, Kyung Hee University) ;
  • Yoo, Sang-Ho (Department of Food Science and Technology, Sejong University) ;
  • Park, Cheon-Seok (Graduate School of Biotechnology and Institute of Life Science and Resources, Kyung Hee University)
  • Received : 2016.06.16
  • Accepted : 2016.07.26
  • Published : 2016.11.28

Abstract

The transglycosylation activity of amylosucrase (ASase) has received significant attention owing to its use of an inexpensive donor, sucrose, and broad acceptor specificity, including glycone and aglycone compounds. The transglycosylation reaction of recombinant ASase from Deinococcus radiopugnans (DRpAS) was investigated using various phenolic compounds, and quercetin-3-O-rutinoside (rutin) was found to be the most suitable acceptor molecule used by DRpAS. Two amino acid residues in DRpAS variants (DRpAS Q299K and DRpAS Q299R), assumed to be involved in acceptor binding, were constructed by site-directed mutagenesis. Intriguingly, DRpAS Q299K and DRpAS Q299R produced 10-fold and 4-fold higher levels of rutin transglycosylation product than did the wild-type (WT) DRpAS, respectively. According to in silico molecular docking analysis, the lysine residue at position 299 in the mutants enables rutin to more easily position inside the active pocket of the mutant enzyme than in that of the WT, due to conformational changes in loop 4.

Keywords

References

  1. Arnold K, Bordoli L, Kopp J, Schwede T. 2006. The SWISSMODEL workspace: a Web-based environment for protein structure homology modelling. Bioinformatics 22: 195-201. https://doi.org/10.1093/bioinformatics/bti770
  2. Arvanitoyannis IS, Ladas D, Mavromatis A. 2006. Potential uses and applications of treated wine waste: a review. Int. J. Food Sci. Technol. 41: 475-487. https://doi.org/10.1111/j.1365-2621.2005.01111.x
  3. Auffinger P, Bielecki L, Westhof E. 2003. The $Mg^{2+}$ binding sites of t he 5S rRNA loop E motif a s investigated by molecular dynamics simulations. Chem. Biol. 10: 551-561. https://doi.org/10.1016/S1074-5521(03)00121-2
  4. Azuma Y, Ozasa N, Ueda Y, Takagi N. 1986. Pharmacological studies on the anti-inflammatory action of phenolic compounds. J. Dent. Res. 65: 53-56. https://doi.org/10.1177/00220345860650010901
  5. Bae HK, Lee SB, Park CS, Shim JH, Lee HY, Kim MJ, et al. 2002. Modification of ascorbic acid using transglycosylation activity of Bacillus stearothermophilus maltogenic amylase to enhance its oxidative stability. J. Agric. Food Chem. 50: 3309- 3316. https://doi.org/10.1021/jf011550z
  6. Bojarova P, Kren V. 2000. Glycosidases: a key to tailored carbohydrates. Trends Biotechnol. 27: 199-209.
  7. Cetkovic G, Canadanovic-Brunet J, Djilas S, Savatovic S, Mandic A, Tumbas V. 2008. Assessment of polyphenolic content and in vitro antiradical characteristics of apple pomace. Food Chem. 109: 340-347. https://doi.org/10.1016/j.foodchem.2007.12.046
  8. Champion E, Andre I, Moulis C, Boutet J, Descroix K, Morel S, et al. 2009. Design of $\alpha$-transglucosidases of controlled specificity for programmed chemoenzymatic synthesis of antigenic oligosaccharides. J. Am. Chem. Soc. 131: 7379-7389. https://doi.org/10.1021/ja900183h
  9. Champion E, Guerin F, Moulis C, Barbe S, Tran TH, Morel S, et al. 2012. Applying pairwise combinations of amino acid mutations for sorting out highly efficient glucosylation tools for chemo-enzymatic synthesis of bacterial oligosaccharides. J. Am. Chem. Soc. 134: 18677-18688. https://doi.org/10.1021/ja306845b
  10. Chiba S. 1997. Molecular mechanism in $\alpha$-glucosidase and glucoamylase. Biosci. Biotechnol. Biochem. 61: 1233-1239. https://doi.org/10.1271/bbb.61.1233
  11. Cho HK, Kim HH, Seo DH, Jung JH, Park JH, Baek NI, et al. 2011. Biosynthesis of (+)-catechin glycosides using recombinant amylosucrase from Deinococcus geothermalis DSM 11300. Enzyme Microb. Technol. 49: 246-253. https://doi.org/10.1016/j.enzmictec.2011.05.007
  12. Chung MJ, Sung NJ, Park CS, Kweon DK, Mantovani A, Moon TW, et al. 2008. Antioxidative and hypocholesterolemic activities of water-soluble puerarin glycosides in HepG2 cells and in C57 BL/6J mice. Eur. J. Pharmacol. 578: 159-170. https://doi.org/10.1016/j.ejphar.2007.09.036
  13. DeLano WL. 2002. The PyMOL Molecular Graphics System. Delano Scientific LLC, San Carlos, CA, USA.
  14. Fukamizo T, Miyake R, Tamura A, Ohnuma T, Skriver K, Pursiainen NV, Juffer AH. 2009. Flexible loop controlling the enzymatic activity and specificity in a glycosyl hydrolase family 19 endochitinase from barley seeds (Hordeum vulgare L.). Biochim. Biophys. Acta 1794: 1159-1167. https://doi.org/10.1016/j.bbapap.2009.03.009
  15. Garcia-Salas P, Morales-Soto A, Segura-Carretero A, Fernandez- Gutierrez A. 2010. Phenolic-compound-extraction systems for fruit and vegetable samples. Molecules 15: 8813-8826. https://doi.org/10.3390/molecules15128813
  16. Ha SJ, Seo DH, Jung JH, Cha J, Kim TJ, Kim YW, Park CS. 2009. Molecular cloning and functional expression of a new amylosucrase from Alteromonas macleodii. Biosci. Biotechnol. Biochem. 73: 1505-1512. https://doi.org/10.1271/bbb.80891
  17. Hadi SM, Asad SF, Singh S, Ahmad A. 2000. Putative mechanism for anticancer and apoptosis-inducing properties of plant-derived polyphenolic compounds. IUBMB Life 50: 167-171. https://doi.org/10.1080/152165400300001471
  18. Hancock SM, Vaughan MD, Withers SG. 2006. Engineering of glycosidases and glycosyltransferases. Curr. Opin. Chem. Biol. 10: 509-519. https://doi.org/10.1016/j.cbpa.2006.07.015
  19. Jacobs DJ, Rader AJ, Kuhn LA, Thorpe MF. 2001. Protein flexibility predictions using graph theory. Proteins 44: 150-165. https://doi.org/10.1002/prot.1081
  20. Jeong JW, Seo DH, Jung JH, Park JH, Baek NI, Kim MJ, Park CS. 2014. Biosynthesis of glucosyl glycerol, a compatible solute, using intermolecular transglycosylation activity of amylosucrase from Methylobacillus flagellatus KT. Appl. Biochem. Biotechnol. 173: 904-917. https://doi.org/10.1007/s12010-014-0889-z
  21. Jung JH, Jung TY, Seo DH, Yoon SM, Choi HC, Park BC, et al. 2011. Structural and functional analysis of substrate recognition by the 250s loop in amylomaltase from Thermus brockianus. Proteins 79: 633-644. https://doi.org/10.1002/prot.22911
  22. Jung JH, Seo DH, Ha SJ, Song MC, Cha J, Yoo SH, et al. 2009. Enzymatic synthesis of salicin glycosides through transglycosylation catalyzed by amylosucrases from Deinococcus geothermalis and Neisseria polysaccharea. Carbohydr. Res. 344: 1612-1619. https://doi.org/10.1016/j.carres.2009.04.019
  23. Kiefer F, Arnold K, Kunzli M, Bordoli L, Schwede T. 2009. The SWISS-MODEL repository and associated resources. Nucleic Acids Res. 37(Suppl 1): D387-D392. https://doi.org/10.1093/nar/gkn750
  24. Kim MD, Seo DH, Jung JH, Jung DH, Joe MH, Lim SY, et al. 2014. Molecular cloning and expression of amylosucrase from highly radiation-resistant Deinococcus radiopugnans. Food Sci. Biotechnol. 23: 2007-2012. https://doi.org/10.1007/s10068-014-0273-3
  25. Li D, Roh SA, Shim JH, Mikami B, Baik MY, Park CS, Park KH. 2005. Glycosylation of genistin into soluble inclusion complex form of cyclic glucans by enzymatic modification. J. Agric. Food Chem. 56: 6516-6524.
  26. Linde GA, Laverde Jr A, Colauto NB. 2011. Changes to taste perception in the food industry: use of cyclodextrins, pp. 99-118. Handbook of Behavior, Food and Nutrition. Springer, New York.
  27. Lis-Balchin M, Deans SG. 1997. Bioactivity of selected plant essential oils against Listeria monocytogenes. J. Appl. Microbiol. 82: 759-762. https://doi.org/10.1046/j.1365-2672.1997.00153.x
  28. Mazzaferro LS, Pinuel L, Erra-Balsells R, Giudicessi SL, Breccia JD. 2012. Transglycosylation specificity of Acremonium sp. ${\alpha}$-rhamnosyl-${\beta}$-glucosidase and its application to the synthesis of the new fluorogenic substrate 4-methylumbelliferylrutinoside. Carbohydr. Res. 347: 69-75. https://doi.org/10.1016/j.carres.2011.11.008
  29. Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ. 2009. AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J. Comput. Chem. 30: 2785-2791. https://doi.org/10.1002/jcc.21256
  30. Park H, Kim J, Choi KH, Hwang S, Yang SJ, Baek NI, Cha J. 2012. Enzymatic synthesis of piceid glucosides using maltosyltransferase from Caldicellulosiruptor bescii DSM 6725. J. Agric. Food Chem. 60: 8183-8189. https://doi.org/10.1021/jf302127a
  31. Pizzut-Serin S, Potocki-Veronese G, van der Veen BA, Albenne C, Monsan P, Remaud-Simeon M. 2005. Characterisation of a novel amylosucrase from Deinococcus radiodurans. FEBS Lett. 579: 1405-1410. https://doi.org/10.1016/j.febslet.2004.12.097
  32. Potocki De Montalk G, Remaud-Simeon M, Willemot RM, Planchot V, Monsan P. 1999. Sequence analysis of the gene encoding amylosucrase from Neisseria polysaccharea and characterization of the recombinant enzyme. J. Bacteriol. 181: 375-381.
  33. Rowan AS, Hamilton CJ. 2006. Recent developments in preparative enzymatic syntheses of carbohydrates. Nat. Prod. Rep. 23: 412-443. https://doi.org/10.1039/b409898f
  34. Sanner MF. 1999. Python: a programming language for software integration and development. J. Mol. Graph. Model. 17: 57-61.
  35. Sawa T, Nakao M, Akaike T, Ono K, Maeda H. 1999. Alkylperoxyl radical-scavenging activity of various flavonoids and other phenolic compounds: implications for the antitumor- promoter effect of vegetables. J. Agric. Food Chem. 47: 397-402. https://doi.org/10.1021/jf980765e
  36. Schwede T, Kopp J, Guex N, Peitsch MC. 2003. SWISSMODEL: an automated protein homology-modeling server. Nucleic Acids Res. 31: 3381-3385. https://doi.org/10.1093/nar/gkg520
  37. Seo DH, Jung JH, Choi HC, Cho HK, Kim HH, Ha SJ, et al. 2012. Functional expression of amylosucrase, a glucansynthesizing enzyme, from Arthrobacter chlorophenolicus A6. J. Microbiol. Biotechnol. 22: 1253-1257. https://doi.org/10.4014/jmb.1201.01056
  38. Seo DH, Jung JH, Ha SJ, Cho HK, Jung DH, Kim TJ, et al. 2012. High-yield enzymatic bioconversion of hydroquinone to ${\alpha}$-arbutin, a powerful skin lightening agent by amylosucrase. Appl. Microbiol. Biotechnol. 94: 1189-1197. https://doi.org/10.1007/s00253-012-3905-7
  39. Seo DH, Jung JH, Ha SJ, Yoo SH, Kim TJ, Cha JH, Park CS. 2008. Molecular cloning of the amylosucrase gene from a moderate thermophilic bacterium Deinococcus geothermalis and analysis of its dual enzyme activity, pp. 125-140. Carbohydrate-Active Enzymes: Structure, Function and Applications. Woodhead Publishing Limited, Cambridge, UK.
  40. Skov LK, Pizzut-Serin S, Remaud-Simeon M, Ernst HA, Gajhede M, Mirza O. 2013. The structure of amylosucrase from Deinococcus radiodurans has an unusual open active-site topology. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 69: 973-978. https://doi.org/10.1107/S1744309113021714
  41. Smith P, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano M, Klenk DC. 1985. Measurement of protein using bicinchoninic acid. Anal Biochem. 150: 76-85. https://doi.org/10.1016/0003-2697(85)90442-7
  42. Stam MR, Danchin EG, Rancurel C, Coutinho PM, Henrissat B. 2006. Dividing the large glycoside hydrolase family 13 into subfamilies: towards improved functional annotations of ${\alpha}$-amylase-related proteins. Protein Eng. Des. Sel. 19: 555-562. https://doi.org/10.1093/protein/gzl044
  43. Suzuki Y, Uchida K. 1999. Enzymatic glycosylation of aglycones of pharmacological significance, pp. 297-312. Carbohydrate Biotechnology Protocols. Humana Press, New Jersey.
  44. Taylor JC, Takusagawa F, Markham GD. 2002. The active site loop of S-adenosylmethionine synthetase modulates catalytic efficiency. Biochemistry 41: 9358-9369. https://doi.org/10.1021/bi025851t
  45. Thibodeaux CJ, Melancon CE, Liu HW. 2007. Unusual sugar biosynthesis and natural product glycodiversification. Nature 446: 1008-1016. https://doi.org/10.1038/nature05814
  46. Van Der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJ. 2005. GROMACS: fast, flexible, and free. J. Comput. Chem. 26: 1701-1718. https://doi.org/10.1002/jcc.20291
  47. Wang LX, Huang W. 2009. Enzymatic transglycosylation for glycoconjugate synthesis. Curr. Opin. Chem. Biol. 13: 592-600. https://doi.org/10.1016/j.cbpa.2009.08.014
  48. Wang LX. 2008. Chemoenzymatic synthesis of glycopeptides and glycoproteins through endoglycosidase-catalyzed transglycosylation. Carbohydr. Res. 343: 1509-1522 https://doi.org/10.1016/j.carres.2008.03.025

Cited by

  1. Identification of an α-(1,4)-Glucan-Synthesizing Amylosucrase from Cellulomonas carboniz T26 vol.65, pp.10, 2017, https://doi.org/10.1021/acs.jafc.6b05667
  2. Glycosylation Enhances the Physicochemical Properties of Caffeic Acid Phenethyl Ester vol.27, pp.11, 2017, https://doi.org/10.4014/jmb.1706.06017
  3. Recent progress on biological production of α-arbutin vol.102, pp.19, 2016, https://doi.org/10.1007/s00253-018-9241-9
  4. Synthesis of Aesculetin and Aesculin Glycosides Using Engineered Escherichia coli Expressing Neisseria polysaccharea Amylosucrase vol.28, pp.4, 2016, https://doi.org/10.4014/jmb.1711.11055
  5. Sustainable Production of Dihydroxybenzene Glucosides Using Immobilized Amylosucrase from Deinococcus geothermalis vol.28, pp.9, 2018, https://doi.org/10.4014/jmb.1805.05054
  6. Enzymatic synthesis of α-flavone glucoside via regioselective transglucosylation by amylosucrase from Deinococcus geothermalis vol.13, pp.11, 2016, https://doi.org/10.1371/journal.pone.0207466
  7. Comparative study on amylosucrases derived from Deinococcus species and catalytic characterization and use of amylosucrase derived from Deinococcus wulumuqiensis vol.3, pp.1, 2019, https://doi.org/10.1515/amylase-2019-0002
  8. Enzymatic modification of daidzin using heterologously expressed amylosucrase in Bacillus subtilis vol.28, pp.1, 2016, https://doi.org/10.1007/s10068-018-0453-7
  9. Potential Industrial Production of a Well-Soluble, Alkaline-Stable, and Anti-Inflammatory Isoflavone Glucoside from 8-Hydroxydaidzein Glucosylated by Recombinant Amylosucrase of Deinococcus geothermal vol.24, pp.12, 2016, https://doi.org/10.3390/molecules24122236
  10. Enrichment of Polyglucosylated Isoflavones from Soybean Isoflavone Aglycones Using Optimized Amylosucrase Transglycosylation vol.25, pp.1, 2016, https://doi.org/10.3390/molecules25010181
  11. Biosynthesis of glyceride glycoside (nonionic surfactant) by amylosucrase, a powerful glycosyltransferase vol.30, pp.2, 2016, https://doi.org/10.1007/s10068-020-00861-0