DOI QR코드

DOI QR Code

The Anti-Adipogenic Activity of a New Cultivar, Pleurotus eryngii var. ferulae 'Beesan No. 2', through Down-Regulation of PPAR γ and C/EBP α in 3T3-L1 Cells

  • Kang, Min-Jae (Department of Microbiology, College of Natural Sciences, Pukyong National University) ;
  • Kim, Keun Ki (Department of Life Science and Environmental Biochemistry, College of Natural Resource and Life Sciences, Pusan National University) ;
  • Son, Byoung Yil (Blue-Bio Industry Regional Innovation Center, Dongeui University) ;
  • Nam, Soo-Wan (Department of Biotechnology and Bioengineering, Dongeui University) ;
  • Shin, Pyung-Gyun (Mushroom Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration) ;
  • Kim, Gun-Do (Department of Microbiology, College of Natural Sciences, Pukyong National University)
  • Received : 2016.06.24
  • Accepted : 2016.07.26
  • Published : 2016.11.28

Abstract

Adipogenesis is one of the cellular processes and a highly controlled program. Nowadays, inhibition of adipogenesis has received attention as an effective way to regulate obesity. In the current study, we investigated the inhibition effect of a chloroform extract of Pleurotus eryngii var. ferulae 'Beesan No. 2' (CEBT) on adipogenesis in 3T3-L1 murine preadipocytes. Pleurotus eryngii var. ferulae is one of many varieties of King oyster mushroom and has been reported to have various biological activities, including antitumor and anti-inflammation effects. Biological activities of 'Beesan No. 2', a new cultivar of Pleurotus eryngii var. ferulae, have not yet been reported. In this study, we found that CEBT suppressed adipogenesis in 3T3-L1 cells through inhibition of key adipogenic transcription factors, such as peroxisome proliferatoractivated receptor ${\gamma}$ and CCAAT/enhancer binding protein ${\alpha}$. Additionally, CEBT reduced the expression of the IRS/PI3K/Akt signaling pathway and its downstream factors, including mammalian target of rapamycin and p70S6 kinase, which stimulate adipogenesis. Furthermore, ${\beta}-catenin$, a suppressor of adipogenesis, was increased in CEBT-treated cells. These results indicate that Pleurotus eryngii var. ferulae 'Beesan No. 2' effectively inhibited adipogenesis, so this mushroom has potential as an anti-obesity food and drug.

Keywords

References

  1. Ali AT, Hochfeld WE, Myburgh R, Pepper MS. 2013. Adipocyte and adipogenesis. Eur. J. Cell Biol. 92: 229-236. https://doi.org/10.1016/j.ejcb.2013.06.001
  2. Bray GA. 2004. Medical consequences of obesity. J. Clin. Endocrinol. Metab. 89: 2583-2589. https://doi.org/10.1210/jc.2004-0535
  3. Camp HS, Ren D, Leff T. 2002. Adipogenesis and fat-cell function in obesity and diabetes. Trends Mol. Med. 8: 442-447. https://doi.org/10.1016/S1471-4914(02)02396-1
  4. Chirala SS, Wakil SJ. 2004. Structure and function of animal fatty acid synthase. Lipids 39: 1045-1053. https://doi.org/10.1007/s11745-004-1329-9
  5. Cross DA, Alessi DR, Cohen P, Andjelkovich M, Hemmings BA. 1995. Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature 378: 785-789. https://doi.org/10.1038/378785a0
  6. Eberle D, Hegarty B, Bossard P, Ferre P, Foufelle F. 2004. SREBP transcription factors: master regulators of lipid homeostasis. Biochimie 86: 839-848. https://doi.org/10.1016/j.biochi.2004.09.018
  7. Fang D, Hawke D, Zheng Y, Xia Y, Meisenhelder J, Nika H, et al. 2007. Phosphorylation of beta-catenin by AKT promotes beta-catenin transcriptional activity. J. Biol. Chem. 282: 11221-11229. https://doi.org/10.1074/jbc.M611871200
  8. Farmer S. 2005. Regulation of $PPAR\gamma $ activity during adipogenesis. Int. J. Obes. 29: S13-S16. https://doi.org/10.1038/sj.ijo.0802907
  9. Fox HL, Kimball SR, Jefferson LS, Lynch CJ. 1998. Amino acids stimulate phosphorylation of p70S6k and organization of rat adipocytes into multicellular clusters. Am. J. Physiol. 274: C206-C213. https://doi.org/10.1152/ajpcell.1998.274.1.C206
  10. Fruman DA, Meyers RE, Cantley LC. 1998. Phosphoinositide kinases. Annu. Rev. Biochem. 67: 481-507. https://doi.org/10.1146/annurev.biochem.67.1.481
  11. Hong K, Kim B, Kim H. 2004. Studies on the biological activity of Pleurotus ferulea. J. Korean. Soc. Food Sci. Nutr. 33: 791-796. https://doi.org/10.3746/jkfn.2004.33.5.791
  12. Hong K, Kim B, Kim H. 2004. Analysis of nutritional components in Pleurotus ferulea. J. Food Sci. Technol. 36: 563-567.
  13. Khan A, Pessin J. 2002. Insulin regulation of glucose uptake: a complex interplay of intracellular signalling pathways. Diabetologia 45: 1475-1483. https://doi.org/10.1007/s00125-002-0974-7
  14. Kim JE, Chen J. 2004. Regulation of peroxisome proliferatoractivated receptor-gamma activity by mammalian target of rapamycin and amino acids in adipogenesis. Diabetes 53: 2748-2756. https://doi.org/10.2337/diabetes.53.11.2748
  15. Kopelman PG. 2000. Obesity as a medical problem. Nature 404: 635-643. https://doi.org/10.1038/35007508
  16. Kowalska K, Olejnik A, Rychlik J, Grajek W. 2015. Cranberries (Oxycoccus quadripetalus) inhibit lipid metabolism and modulate leptin and adiponectin secretion in 3T3-L1 adipocytes. Food Chem. 185: 383-388. https://doi.org/10.1016/j.foodchem.2015.03.152
  17. Liu J, Farmer SR. 2004. Regulating the balance between peroxisome proliferator-activated receptor gamma and betacatenin signaling during adipogenesis. A glycogen synthase kinase 3beta phosphorylation-defective mutant of betacatenin inhibits expression of a subset of adipogenic genes. J. Biol. Chem. 279: 45020-45027. https://doi.org/10.1074/jbc.M407050200
  18. Liu M, Liu F. 2009. Transcriptional and post-translational regulation of adiponectin. Biochem. J. 425: 41-52.
  19. Lowell BB. 1999. PPARgamma: an essential regulator of adipogenesis and modulator of fat cell function. Cell 99: 239-242. https://doi.org/10.1016/S0092-8674(00)81654-2
  20. Mandrup S, Lane MD. 1997. Regulating adipogenesis. J. Biol. Chem. 272: 5367-5370. https://doi.org/10.1074/jbc.272.9.5367
  21. Marti A, Moreno-Aliaga MJ, Hebebrand J, Martinez JA. 2004. Genes, lifestyles and obesity. Int. J. Obes. Relat. Metab. Disord. 28(Suppl 3): S29-S36.
  22. Ntambi JM, Young-Cheul K. 2000. Adipocyte differentiation and gene expression. J. Nutr. 130: 3122S-3126S. https://doi.org/10.1093/jn/130.12.3122S
  23. Rameh LE, Cantley LC. 1999. The role of phosphoinositide 3-kinase lipid products in cell function. J. Biol. Chem. 274: 8347-8350. https://doi.org/10.1074/jbc.274.13.8347
  24. Rayalam S, Della-Fera MA, Baile CA. 2008. Phytochemicals and regulation of the adipocyte life cycle. J. Nutr. Biochem. 19: 717-726. https://doi.org/10.1016/j.jnutbio.2007.12.007
  25. Rosen ED, Hsu CH, Wang X, Sakai S, Freeman MW, Gonzalez FJ, Spiegelman BM. 2002. C/EBPalpha induces adipogenesis through PPARgamma: a unified pathway. Genes Dev. 16: 22-26. https://doi.org/10.1101/gad.948702
  26. Sesti G, Federici M, Hribal ML, Lauro D, Sbraccia P, Lauro R. 2001. Defects of the insulin receptor substrate (IRS) system in human metabolic disorders. FASEB J. 15: 2099-2111. https://doi.org/10.1096/fj.01-0009rev
  27. Shimano H. 2001. Sterol regulatory element-binding proteins (SREBPs): transcriptional regulators of lipid synthetic genes. Prog. Lipid Res. 40: 439-452. https://doi.org/10.1016/S0163-7827(01)00010-8
  28. Shin P, Yoo Y, Kong W, Oh Y. 2014. Characteristics and breeding of a new cultivar Pleurotus eryngii var. ferulae, 'Beesan No. 2'. J. Mushrooms 12: 58-62. https://doi.org/10.14480/JM.2014.12.1.58
  29. Spiegelman BM, Flier JS. 1996. Adipogenesis and obesity: rounding out the big picture. Cell 87: 377-389. https://doi.org/10.1016/S0092-8674(00)81359-8
  30. Sun K, Kusminski CM, Scherer PE. 2011. Adipose tissue remodeling and obesity. J. Clin. Invest. 121: 2094-2101. https://doi.org/10.1172/JCI45887
  31. Sutherland C, Leighton IA, Cohen P. 1993. Inactivation of glycogen synthase kinase-3 beta by phosphorylation: new kinase connections in insulin and growth-factor signalling. Biochem. J. 296: 15-19. https://doi.org/10.1042/bj2960015
  32. Taurin S, Sandbo N, Qin Y, Browning D, Dulin NO. 2006. Phosphorylation of beta-catenin by cyclic AMP-dependent protein kinase. J. Biol. Chem. 281: 9971-9976. https://doi.org/10.1074/jbc.M508778200
  33. Wong RH, Sul HS. 2010. Insulin signaling in fatty acid and fat synthesis: a transcriptional perspective. Curr. Opin. Pharmacol. 10: 684-691. https://doi.org/10.1016/j.coph.2010.08.004
  34. Xiang X, Zhao J, Xu G, Li Y, Zhang W. 2011. mTOR and the differentiation of mesenchymal stem cells. Acta Biochim. Biophys. Sin. (Shanghai) 43: 501-510. https://doi.org/10.1093/abbs/gmr041
  35. Yazdi FT, Clee SM, Meyre D. 2015. Obesity genetics in mouse and human: back and forth, and back again. PeerJ. 3: e856. https://doi.org/10.7717/peerj.856
  36. Yu W, Chen Z, Zhang J, Zhang L, Ke H, Huang L, et al. 2008. Critical role of phosphoinositide 3-kinase cascade in adipogenesis of human mesenchymal stem cells. Mol. Cell. Biochem. 310: 11-18. https://doi.org/10.1007/s11010-007-9661-9
  37. Zhang HH, H uang J , Duvel K, Bobac k B, Wu S, S quillace RM, et al. 2009. Insulin stimulates adipogenesis through the Akt-TSC2-mTORC1 pathway. PLoS One 4: e6189. https://doi.org/10.1371/journal.pone.0006189

Cited by

  1. Water Extract of Pleurotus eryngii var. ferulae Prevents High-Fat Diet-Induced Obesity by Inhibiting Pancreatic Lipase vol.22, pp.2, 2016, https://doi.org/10.1089/jmf.2018.4255
  2. Anti-Obesity Effects of Lactobacillus fermentum CQPC05 Isolated from Sichuan Pickle in High-Fat Diet-Induced Obese Mice through PPAR-α Signaling Pathway vol.7, pp.7, 2019, https://doi.org/10.3390/microorganisms7070194
  3. The Inhibitory Effect of Cordycepin on the Proliferation of MCF-7 Breast Cancer Cells, and its Mechanism: An Investigation Using Network Pharmacology-Based Analysis vol.9, pp.9, 2016, https://doi.org/10.3390/biom9090407
  4. Raw Bowl Tea (Tuocha) Polyphenol Prevention of Nonalcoholic Fatty Liver Disease by Regulating Intestinal Function in Mice vol.9, pp.9, 2016, https://doi.org/10.3390/biom9090435
  5. Malus hupehensis leaves extract attenuates obesity, inflammation, and dyslipidemia by modulating lipid metabolism and oxidative stress in high‐fat diet‐induced obese mice vol.44, pp.11, 2020, https://doi.org/10.1111/jfbc.13484