DOI QR코드

DOI QR Code

식물세포배양으로부터 파클리탁셀 및 이의 반합성 전구체 10-디아세틸파클리탁셀의 분리 양상

Separation Behavior of Paclitaxel and Its Semi-synthetic Precursor 10-Deacetylpaclitaxel from Plant Cell Cultures

  • 이충기 (공주대학교 화학공학부) ;
  • 김진현 (공주대학교 화학공학부)
  • Lee, Chung-Gi (Department of Chemical Engineering, Kongju National University) ;
  • Kim, Jin-Hyun (Department of Chemical Engineering, Kongju National University)
  • 투고 : 2015.07.21
  • 심사 : 2015.09.08
  • 발행 : 2016.02.01

초록

본 연구에서는 식물세포배양으로부터 항암물질 파클리탁셀 및 이의 반합성 전구체 10-디아세틸파클리탁셀의 분리 양상을 조사하였다. 식물세포인 바이오매스를 이용한 분리/정제 공정인 용매를 이용한 바이오매스 추출, 액-액 추출, 흡착제 처리, 헥산 침전, 분별 침전을 순차적으로 수행한 결과, 흡착제 처리 공정에서 10-디아세틸파클리탁셀는 파클리탁셀로부터 가장 효과적으로 분리됨을 알 수 있었다. 파클리탁셀 및 10-디아세틸파클리탁셀 분리에 적합한 흡착제 종류, 건조시료/흡착제 비율, 흡착제 처리 온도는 각각 실로퓨트, 1:1.5(w/w), $20^{\circ}C$ 이었다. 최적의 흡착제 처리 조건에서 10-디아세틸파클리탁셀은 74.1% 분리/회수 가능하였다.

In this study, we investigated the separation behavior of the anticancer agent paclitaxel and its semi-synthetic precursor 10-deacetylpaclitaxel (10-DAP) from plant cell cultures. As a result of sequential separation/purification performed by biomass extraction with solvent, liquid-liquid extraction, adsorbent treatment, hexane precipitation, and fractional precipitation, the adsorbent treatment was found to be the most effective in separating and recovering 10-DAP from paclitaxel. The optimal adsorbent type, crude extract/adsorbent ratio, and adsorbent treatment temperature were sylopute, 1:1.5 (w/w), and $20^{\circ}C$, respectively. The separation/recovery of 10-DAP from paclitaxel was 74.1% in adsorbent treatment process under optimal conditions.

키워드

참고문헌

  1. Kim, G. J. and Kim, J. H., "A Simultaneous Microwave-assisted Extraction and Adsorbent Treatment Process Under Acidic Conditions for Recovery and Separation of Paclitaxel from Plant cell," Korean J. Chem. Eng., 32, 1023-1028(2015). https://doi.org/10.1007/s11814-015-0075-1
  2. Rao, K. V., Hanuman, B., Alvarez, C., Stoy, M., Juchum, J., Davies, R. M. and Baxley, R., "A New Large-scale Process for Taxol and Related Taxanes from Taxus brevifolia," Pharm. Res., 12, 1003-1010(1995). https://doi.org/10.1023/A:1016206314225
  3. Baloglu, E. and Kingston, D. G., "A New Semisynthesis of Paclitaxel from Baccatin III," J. Nat. Prod., 62, 1068-1071(1999). https://doi.org/10.1021/np990040k
  4. Choi, H. K., Adams, T. L., Stahlhut, R. W., Kim, S. I., Yun, J. H., Song, B. K., Kim, J. H., Hong, S. S. and Lee, H. S., "Method for Mass Production of Taxol by Semi-continuous Culture with Taxus chinensis Cell Culture," U.S. Patent No. 5,871,979(1999).
  5. Park, G. Y., Kim, G. J. and Kim, J. H., "Effect of Tar Compounds on the Purification Efficiency of Paclitaxel from Taxus chinensis," J. Ind. Eng. Chem., 21, 151-154(2015). https://doi.org/10.1016/j.jiec.2014.03.042
  6. Kim, J. H., Gi, U. S., Min, B. C., Hong, S. S. and Lee, H. S., "Production and Purification of Taxane Derivatives from the Plant Cell Cultures of Taxus chinensis in Large-scale Process," Korean J. Biotechnol. Bioeng., 15, 398-401(2000).
  7. Kang, S. H., Kim, J. H. and Mun, S., "Optimal Design of a Tandem Simulated Moving Bed Process for Separation of Paclitaxel, 13-Dehydroxybaccatin III, and 10-deacetylpaclitaxel," Process Biochem., 45, 1468-1476(2010). https://doi.org/10.1016/j.procbio.2010.05.020
  8. Ringel, I., Horwitz, S. B. and Susan, B. H., "Taxol is Converted to 7-epitaxol, a Biologically Active Isomer, in Cell Culture Medium," J. Pharmacol. Exp. Ther., 242, 692-698(1987).
  9. Pyo, S. H., Choi, H. J. and Han, B. H., "Large-scale Purification of 13-dehydroxybaccatin III and 10-deacetylpaclitaxel, Semisynthetic Precursors of Paclitaxel, from Cell Cultures of Taxus chinensis," J. Chromatogr. A, 1123, 15-21(2006). https://doi.org/10.1016/j.chroma.2006.04.093
  10. Kim, J. H., Kang, I. S., Choi, H. K., Hong, S. S. and Lee, H. S., "A Novel Prepurification for Paclitaxel from Plant Cell Cultures," Process Biochem., 37, 679-682(2002). https://doi.org/10.1016/S0032-9592(01)00247-3
  11. Pyo, S. H., Park, H. B., Song, B. K., Han, B. H. and Kim, J. H., "A Large-scale Purification of Paclitaxel from Cell Cultures of Taxus chinensis," Process Biochem., 39, 1985-1991(2004). https://doi.org/10.1016/j.procbio.2003.09.028
  12. Kim, J. H., "Paclitaxel: Recovery and Purification in Commercialization Step," Korean J. Biotechnol. Bioeng., 21, 1-10(2006).
  13. Gamborg, O. L., Miller, R. A. and Ojima, K., "Nutrient Requirements of Suspension Cultures of Soybean Root Cells," Exp. Cell Res., 50, 151-158(1968). https://doi.org/10.1016/0014-4827(68)90403-5
  14. Choi, H. K., Son, S. J., Na, G. H., Hong, S. S., Park, Y. S. and Song, J. Y., "Mass Production of Paclitaxel by Plant Cell Culture," Korean J. Plant Biotechnol., 29, 59-62(2002). https://doi.org/10.5010/JPB.2002.29.1.059
  15. Lee, C. G. and Kim, J. H., "Optimization of Adsorbent Treatment Process for the Purification of Paclitaxel from Plat Cell Cultures of Taxus chinensis," Korean Chem. Eng. Res., 52, 497-502(2014). https://doi.org/10.9713/kcer.2014.52.4.497
  16. Lee, C. G. and Kim, J. H., "Improved Fractional Precipitation Method for Purification of Paclitaxel," Process Biochem., 49, 1370-1376(2014). https://doi.org/10.1016/j.procbio.2014.04.011
  17. Pyo, S. H., Song, B. K., Ju, C. H., Han, B. H. and Choi, H. J., "Effects of Absorbent Treatment on the Purification of Paclitaxel from Cell Cultures of Taxus chinensis and Yew Tree," Process Biochem., 40, 1113-1117(2005). https://doi.org/10.1016/j.procbio.2004.03.004

피인용 문헌

  1. 파클리탁셀의 잔류 펜탄 제거를 위한 회전증발의 동역학 및 열역학에 관한 연구 vol.55, pp.6, 2016, https://doi.org/10.9713/kcer.2017.55.6.807
  2. 실로퓨트에 대한 2-피콜린의 흡착 특성 평가 vol.57, pp.2, 2016, https://doi.org/10.9713/kcer.2019.57.2.210
  3. Adsorption Kinetics, Mechanism, Isotherm, and Thermodynamic Analysis of Paclitaxel from Extracts of Taxus chinensis Cell Cultures onto Sylopute vol.24, pp.3, 2019, https://doi.org/10.1007/s12257-019-0001-1
  4. 실로퓨트에 의한 Taxus chinensis 유래 7-에피-10-디아세틸파클리탁셀의 흡착에 대한 평형, 등온흡착식, 동역학 및 열역학적 특성 vol.58, pp.1, 2020, https://doi.org/10.9713/kcer.2020.58.1.113