DOI QR코드

DOI QR Code

CONVERGENCE OF NEWTON'S METHOD FOR SOLVING A NONLINEAR MATRIX EQUATION

  • Meng, Jie (Department of Mathematics, Pusan National University) ;
  • Lee, Hyun-Jung (Department of Mathematics, Pusan National University) ;
  • Kim, Hyun-Min (Department of Mathematics, Pusan National University)
  • 투고 : 2015.11.05
  • 심사 : 2016.01.02
  • 발행 : 2016.01.30

초록

We consider the nonlinear matrix equation $X^p+AX^qB+CXD+E=0$, where p and q are positive integers, A, B and E are $n{\times}n$ nonnegative matrices, C and D are arbitrary $n{\times}n$ real matrices. A sufficient condition for the existence of the elementwise minimal nonnegative solution is derived. The monotone convergence of Newton's method for solving the equation is considered. Several numerical examples to show the efficiency of the proposed Newton's method are presented.

키워드

참고문헌

  1. W.N. Anderson, G.D. Kleindorfer, P.R. Kleindorfer, M.B. Woodroofe, Consistent estimates of the parameters of a linear system, Ann. Math. Statist. 40 (1969) 2064-2075. https://doi.org/10.1214/aoms/1177697286
  2. D.A. Bini, G. Latouche, B. Meini, Numerical methods for structured Markov chains, Oxford University Press, 2005.
  3. Ph. Bougerol, Kalman filtering with random coeffcients and contractions, SIAM J. Control Optim. 31 (1993) 942-959. https://doi.org/10.1137/0331041
  4. G.J. Davis, Numerical solution of a quadratic matrix equation, SIAM J. Sci. Statist. Comput. 2 (2) (1981) 164-175. https://doi.org/10.1137/0902014
  5. G.J. Davis, Algorithm 598: an algorithm to compute solvent of the matrix equation $AX^2$ + BX + C = 0, ACM Trans. Math. Software 9 (2) (1983) 341-345.
  6. X. Duan, A. Liao, On the existence of Hermitian positive definite solutions of the matrix equation $X^s+A^*X^{-t}A$ = Q, Linear Algebra Appl. 429 (2008) 673-687. https://doi.org/10.1016/j.laa.2008.03.019
  7. C.-H. Guo, Convergence rate of an iterative method for nonlinear matrix equations, SIAM J. Control Optim. 31 (1993) 942-959. https://doi.org/10.1137/0331041
  8. C.-H. Guo, Newton's method for the discrete algebraic Riccati equations when the closed loop matrix has eigenvalues on the unit circle, SIAM J. Matrix Anal. Appl. 20 (1999) 279-294.
  9. C.-H. Guo, P. Lancaster, Iterative solution of two matrix equations, Math. Comp. 68 (1999) 1589-1603. https://doi.org/10.1090/S0025-5718-99-01122-9
  10. C.-H. Guo, N.J. Higham, Iterative solution of a nonsymmetric algebraic Riccati equation, SIAM J. Matrix Anal. Appl. 29 (2007) 396-412. https://doi.org/10.1137/050647669
  11. C.-H. Guo, A.J. Laub, On the iterative solution of a class of nonsymmetric algebraic Riccati equations, SIAM J. Matrix Anal. Appl. 67 (1998) 1089-1105.
  12. G.A. Hewer, An iterative technique for the computation of the steady-state gains for the discrete optimal regular, IEEE Trans. Autom. Control 16 (1971) 382-384. https://doi.org/10.1109/TAC.1971.1099755
  13. N.J. Higham, H.-Y. Kim, Numercial analysis of a quadratic matrix equation, IAM J. Numer. Anal. 20 (4) (2000) 499-519. https://doi.org/10.1093/imanum/20.4.499
  14. N.J. Higham, H.-Y. Kim, Solving a quadratic matrix eqaution by Newton's method with exact line searches, SIAM J. Matrix Anal. Appl. 23 (2001) 303-416. https://doi.org/10.1137/S0895479899350976
  15. Z. Jia, M. Zhao, M. Wang, S. Ling, Solvability theory and iteration method for one self-adjoint polynomial matrix equation, J. Appl. Math. 2014, Art. ID 681605, 7 pp.
  16. Z. Jia, M. Wei, Solvability and sensitivity theory of polynomial matrix equation $X^s+A^TX^tA$ = Q, Appl. Math. Comput. 209 (2009) 230-237.
  17. C. Jung, H.-M. Kim, Y. Lim, On the solution of the nonlinear matrix equation $X^n$ = f(X), Linear Algebra Appl. 430 (2009) 2042-2052. https://doi.org/10.1016/j.laa.2008.11.013
  18. H.-M. Kim, Convergence of Newtion's method for solving a class of quadratic matrix equaitons, Honam Math. J. 30 (2) (2008) 399-409. https://doi.org/10.5831/HMJ.2008.30.2.399
  19. W. Kratz, E. Stickel, Numerical solution of matrix polynomial equations by Newton's method, IMA J. Numer. Anal. 7 (1987) 355-369. https://doi.org/10.1093/imanum/7.3.355
  20. G. Latouche, Newton's iteration for nonlinear equations in Markov chains, IMA J. Numer. Anal. 7 (1987) 355-369. https://doi.org/10.1093/imanum/7.3.355
  21. A.J. Lauh, Invariant Subspace Methods for the Numerical Solution of Riccati equations, Berlin: Springer-Verlag, 1991, 163-196.
  22. X. Liu, H. Gao, On the positive definite solutions of the matrix equations $X^s{\pm}A^TX^{-t}A=I_n$, Linear Algebra Appl. 368 (2003) 83-97. https://doi.org/10.1016/S0024-3795(02)00661-4
  23. J. Meng, H.-M. Kim, The positive definite solution to a nonlinear matrix equation, Linear and Multilinear Algebra, 2015. .
  24. Z.-Y. Peng, S.M. EL-Sayed, X.-L. Zhang, Iterative mthods for the extremal positive definite solution of the matrix equation $X+A_*X^{-{\alpha}}A=Q$, J. Comput. Appl. Math. 200 (2007) 520-527. https://doi.org/10.1016/j.cam.2006.01.033
  25. G. Poole, T. Boullion, A survey on M-matrices, SIAM Rev. 16 (4) (1974) 419-427. https://doi.org/10.1137/1016079
  26. J.-H. Seo, H.-M. Kim, Convergence of pure and relaxed Newton methods for solving a matrix polynomial equation arising in stochastic models, Linear Algebra Appl. 440 (2014) 34-49. https://doi.org/10.1016/j.laa.2013.10.043
  27. X. Zhan, Computing the extremal positive definite solutions of a matrix equation, SIAM J. Sci, Comput. 17 (1996) 1167-1174. https://doi.org/10.1137/S1064827594277041