DOI QR코드

DOI QR Code

VARIOUS SHADOWING PROPERTIES FOR INVERSE LIMIT SYSTEMS

  • Lee, Manseob (Department of Mathematics Mokwon University)
  • Received : 2016.09.09
  • Accepted : 2016.10.13
  • Published : 2016.11.15

Abstract

Let $f:X{\rightarrow}X$ be a continuous surjection of a compact metric space and let ($X_f,{\tilde{f}}$) be the inverse limit of a continuous surjection f on X. We show that for a continuous surjective map f, if f has the asymptotic average, the average shadowing, the ergodic shadowing property then ${\tilde{f}}$ is topologically transitive.

Keywords

References

  1. N. Aoki and K. Hiride, Topological theory of dynamical systems, Recent Advances, North-Holland, 1994.
  2. M. L. Blank, Metric properties of ${\epsilon}$-trajectories of dynamical systems with stochastic behaviour, Ergod. Th. Dynam. Syst. 8 (1988), 365-378.
  3. A. Fakhari and F. H. Ghane, On shadowing: ordinary and ergodic, J. Math. Anal. Appl. 364 (2010), 151-155. https://doi.org/10.1016/j.jmaa.2009.11.004
  4. R. Gu, The asymptotic average shadowing property and transitivity, Nonlinear Anal. 67 (2007), 1680-1689. https://doi.org/10.1016/j.na.2006.07.040
  5. M. Lee, Robust chain transitive diffeomorphisms, J. Inequal. Appl. 230 (2015), 1-6.
  6. J. Park and Y. Zhang, Average shadowing properties on compact metric spaces, Commun. Korean Math. Soc. 21 (2006), 355-361. https://doi.org/10.4134/CKMS.2006.21.2.355
  7. K. Sakai, Shadowable chain transitive sets, J. Difference Equ. Appl. 19 (2013), 1601-1618. https://doi.org/10.1080/10236198.2013.767897

Cited by

  1. SOME SHADOWING PROPERTIES OF THE SHIFTS ON THE INVERSE LIMIT SPACES vol.31, pp.4, 2018, https://doi.org/10.14403/jcms.2018.31.1.461