DOI QR코드

DOI QR Code

Estimating Maintenance Cost of RAPCON at Air Force Base

비행기지 RAPCON 유지보수비용 추정

  • Bang, Jang-Kyu (Department of Flight Operation, Korea National University of Transportation) ;
  • Lee, Gun-Young (Department of Flight Operation, Korea National University of Transportation)
  • 방장규 (한국교통대학교 항공운항학과) ;
  • 이근영 (한국교통대학교 항공운항학과)
  • Received : 2016.11.29
  • Accepted : 2016.12.28
  • Published : 2016.12.31

Abstract

RAPCON non only controls landing/take-off procedures but also approaching air traffics within 60-70 NM range of air force base. This paper, first of all, tries to research the failure rate per operation hours, mean time between failure (MTBF) of RAPCON according to six blocks such as interrogator, receiver, power unit, display unit, data process unit and antenna. In addition, this paper estimates the maintenance cost over next 10 months based on 50 monthly maintenance cost data. Considering the maintenance cost data from RAPCON which has been used over designed service life span, it is no doubt the forecasted data proved the monthly cost would go up incrementally during the rest of economic life of the facility. Such research result is also proven to be the same with the result of bathtub curve data during operating life.

본 연구는 RAPCON을 구성하는 구성요소를 체계별로 구분하고 체계별 운영시간 에 따른 고장율 등을 분석한다. 아울러 설계수명에 점차 도달한 RAPCON의 운영 중 발생한 유지보수비용 데이터를 토대로 남은 설계수명 기간 동안 향후 발생 가능한 유지보수 비용을 추정한다. 이런 분석결과를 통해 장비의 신뢰성 관련 선행연구들에서 주로 인용되고 있는 욕조커브 (bathtub curve) 이론과 본 연구의 비용예측 결과와의 연관성을 진단하고 안정적인 유지보수를 위한 기초자료로서 활용되고자 한다. 본 시계열 분석에 사용된 자료는 T국 공군이 구형 RAPCON을 신형으로 교체하면서, 설계수명이 다된 기존 RAPCON 운영단계에서 발생했던 50개월의 유지보수비용 데이터이다. 유지보수 비용은 6개 체계별 유지보수비용을 합한 월별 유지보수비용으로 사용하였다. ARIMA 모형을 토대로 향후 10개월 간 발생 가능한 유지보수 비용을 예측한 결과 비용이 상승할 것이라는 통계적으로 신뢰할 만한 추정 결과를 얻었다.

Keywords

References

  1. Boeing, Statistical Summary of Commercial Jet Airplane Accidents : Worldwide Operations, 1959-2014, 2014.
  2. Federal Aviation Authority, Facility Operation Guide 2-4-09, Air Traffic Control, 2008.
  3. B. Hahn, "Reliability assessment of wind turbines in Germany," in European Wind Energy Conference, European Wind Energy Association, Nice; France, pp. 459-462, 1999.
  4. J. A. Andrawus, J. Watson, and M. Kishk, "Wind turbine maintenance optimization: Principles of quantitative maintenance optimization," Wind Engineering, Vol. 31, No. 2, pp. 101-110, 2007. https://doi.org/10.1260/030952407781494467
  5. C. H. Choi, Applying reliability centered maintenance on weapon system : Design, development and operation, Seminar on Korean Air Force Head Quater, 2013.
  6. R. Jiang, Introduction to Quality and Reliability Engineering, 1-st. ed. Bejing, China: Springer, 2015.
  7. K. J. Han, Future Forecasting of Time Series using SPSS, 1-st. ed. Seoul, Korea: Baeksan Books, 2011.
  8. M. S. Kim, K. W. Kim, and S. S. Park , "A study of the air travel demand forecasting using time series ARIMAintervention," Journal of The Korean Society for Aviation and Aeronautics, Vol. 20, No. 1, pp. 63-74, 2012.
  9. G.E.P. Box, and G. M. Jenkins, Time Series Analysis: Forecasting and Control, 2nd ed. San Francisco, CA: Holden-Day, 1976.
  10. G. E. P. Box, G. M. Jenkins, and G.C. Reinsel, Time Series Analysis: Forecasting and Control, 3rd ed. Englewood New Jersey: Prentice Hall, 1994.
  11. S. M. Assadi, Evaluation of The Bias of Yule-Walker Estimates in Auto-Regression Time Series Processes, M. A. Degree, San Jose State University, CA., 2006.
  12. R. Stein, P. Shaman, "A fixed point characterization for bias of auto-regressive estimators," The Analysis of Statistics, Vol. 17, No. 3, pp. 1275-1284, 1989.
  13. D. B. Jung, SPSS(PASW) Time-Series Forecasting, 1st ed. Seoul, Korea: Han Narae Academy Books, 2010.
  14. C. H. Choi, J. K. Bang, and S. S. Park , "A research of applying RAM-c to analyze the design service life for unmanned aerial vehicle," Journal of the Korean Society for Aviation and Aeronautics, Vol. 23, No. 4, pp. 119-126, 2015.