DOI QR코드

DOI QR Code

Antioxidant activity of silkworm powder treated with protease

  • Bae, Sung-Min (Sericultural and Apicultural Materials Division, National Institute of Agricultural Science, RDA) ;
  • Jo, You-Young (Sericultural and Apicultural Materials Division, National Institute of Agricultural Science, RDA) ;
  • Lee, Kwang-Gill (Sericultural and Apicultural Materials Division, National Institute of Agricultural Science, RDA) ;
  • Kim, Hyun-Bok (Sericultural and Apicultural Materials Division, National Institute of Agricultural Science, RDA) ;
  • Kweon, HaeYong (Sericultural and Apicultural Materials Division, National Institute of Agricultural Science, RDA)
  • Received : 2016.10.14
  • Accepted : 2016.11.04
  • Published : 2016.12.31

Abstract

The antioxidant activity of silkworm powder treated by proteolytic enzyme was investigated. Total protein content of silkworm power was assayed using BCA, Bradford assays and SDS-polyacrylamide gel electrophoresis (PAGE) with alkaline protease treatment conditions including temperature and pH. The optimum condition of alkaline protease treatment for silkworm powder was found to be $60^{\circ}C$ and pH 7. The alkaline protease treatment resulted in increased contents of free amino acids, total polyphenol and total flavonoid compared to control group. The silkworm hydrolysates showed excellent antioxidant activities in various in vitro models such as 2,2 diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity, 2,2 - azino-bis(3-ethylbenzthiazoline-6)-sulfonic acid (ABTS) radical scavenging activity. These results provide useful information for using silkworm powder as an ingredient in functional foods and for exploiting alkaline protease treatment to improve the extractability and bioactivity of a raw material.

Keywords

References

  1. Lee WC, Kim I. (2000) The strategy for the development of bioresources utilizing sericultural products and insects. Int J Indust Entomol 1, 95-102.
  2. Jo YY, Kweon HY, Lee KG, Lee HS, Chon JW. (2012) The possibility of silk protein to the chondrogenesis. J Seric Entomol Sci 50, 15-19.
  3. Foss C, Merzari E, Migliaresi C, Motta A. (2013) Silk fibroin/hyaluronic acid 3D matrices for cartilage tissue engineering. Biomacromolecules 14(1), 38-47. https://doi.org/10.1021/bm301174x
  4. Kweon H, Lee SW, Hahn BD, Lee YC, Kim SG. (2014) Hydroxyapatite and silk combination-coated dental implants result in superior bone formation in the peri-implant area compared with hydroxyapatite and collagen combination-coated implants. J Oral Maxillofac Surg 72, 1928-1936. https://doi.org/10.1016/j.joms.2014.06.455
  5. Ju WT, Kim KY, Sung GB, Kim YS. (2014) Effects of physiological active substance extracted from silkworm fece. Int J Indust Entomol 29(2), 179-184. https://doi.org/10.7852/ijie.2014.29.2.179
  6. Kim YS, Kim KY, Kang PD, Cha JY, Heo JS, Cho YS. (2008) Effect of silkworm (Bombyx mori) excrement powder on the alcoholic hepatotoxicity in rats. J Life Sci 18, 1342-1347. https://doi.org/10.5352/JLS.2008.18.10.1342
  7. Ryu KS, Lee HS, Kim KY, Kim MJ, Kang PD. (2012) Effects of silkworm pupae on bone mineral density in ovariectomized rat model of osteoporosis. Int J Indust Entomol 24(2), 63-68. https://doi.org/10.7852/ijie.2012.24.2.063
  8. Chon JW, Jo YY, Lee KG, Lee HS, Yeo JH, Kweon HY. (2013) Effect of silk fibroin hydrolysate on the apoptosis of MCF-7 human breast cancer cells. Int J Indust Entomol 27(2), 228-236. https://doi.org/10.7852/ijie.2013.27.2.228
  9. Ju WT, Kim KY, Sung GB, Kim YS. (2014) Quantitative analysis of 1-Deoxynojirimycin content using silkworm genetic resources. Int J Indust Entomol 29(2), 162-168. https://doi.org/10.7852/ijie.2014.29.2.162
  10. Ju WT, Kim KY, Sung GB, Kim YS. (2015) Quantitative analysis of rutin content using silkworm genetic resources. Int J Indust Entomol 31(2), 56-61. https://doi.org/10.7852/ijie.2015.31.2.56
  11. Kim YH. (2008) Effect of bread with added silkworm powder and cholesterol on lipid metabolism of rat. Korean J Food Nutr 21(3), 306-311.
  12. Choi JH, Kim DI, Park SH, Kim DW, Kim JM, Lee HS, Ryu KS. (2000) Effect of silkworm powder on oxygen radicals and their scavenger enzymes in brain membranes of SD rats. Korean J Seric Sci 42, 93-98.
  13. Singhal P, Nigam VK, Vidyarthi AS. (2012) Studies on production, characterization and applications of microbial alkaline proteases. Int J Adv Biotecnol Res 3, 653-669.
  14. Mabrouk SS, Hashem AM, El-Shayeb NMA, Ismail AMS, Abdel-Fattah AF. (1999) Optimization of alkaline protease productivity by Bacillus licheniformis ATCC 21415. Bioresour. Technol 69, 155-159. https://doi.org/10.1016/S0960-8524(98)00165-5
  15. Mehrotra S, Pandey PK, Gaur R, Darmwal NS. (1999) The production of alkaline protease by a Bacillus species isolate. Bioresour Technol 67, 201-203. https://doi.org/10.1016/S0960-8524(98)00107-2
  16. Bradford MM. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem 72, 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
  17. Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, Fujimoto EK, Goeke NM, Olson BJ, Klenk DC. (1985) Measurement of protein using bicinchoninic acid. Anal. Biochem 150(1), 76-85. https://doi.org/10.1016/0003-2697(85)90442-7
  18. Laemmli UK. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680-685. https://doi.org/10.1038/227680a0
  19. Singleton V and Rossi J. (1965) Colorimetry of total phenolics with phosphomolibdic-phosphotungstic acid reagents. Am J Enol Vitic 16, 144-158.
  20. Zhishen J, Mengcheng T, Jianming W. (1999) The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem 64, 555-559. https://doi.org/10.1016/S0308-8146(98)00102-2
  21. Li X, Rezaei R, Li P, Wu G. (2011) Composition of amino acids in feed ingredients for animal diets. Amino Acids 40,1159-1168. https://doi.org/10.1007/s00726-010-0740-y
  22. Hatano T, Kagawa H, Yasuhara T, Okuda T. (1988) Two new flavonoids and other constituents in licorice root: their relative astringency and radical scavenging effects. Chem Pharm Bull 36(6), 2090-2097. https://doi.org/10.1248/cpb.36.2090
  23. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. (1999) Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med 26, 1231-1237. https://doi.org/10.1016/S0891-5849(98)00315-3
  24. McElderry LA, Tarbit IF, Cassells-Smith AJ. (1982) Six methods for urinary protein compared. Clin Chem 28(2), 356-360.
  25. Chutipongtanate S, Watcharatanyatip K, Homvises T, Jaturongkakul K, Thongboonkerd V. (2012) Systematic comparisons of various spectrophotometric and colorimetric methods to measure concentrations of protein, peptide and amino acid: detectable limits, linear dynamic ranges, interferences, practicality and unit costs. Talanta 98, 123-129. https://doi.org/10.1016/j.talanta.2012.06.058
  26. Hernandez-Ledesma B, Davalos A, Bartolome B, Amigo L. (2005) Preparation of antioxidant enzymatic hydrolysates from -lactalbumin and -lactoglobulin. Identification of active peptides by HPLC-MS/MS. J. Agric. Food Chem 53, 588-593. https://doi.org/10.1021/jf048626m
  27. Udenigwe C and Aluko R. (2011) Chemometric analysis of the amino acid requirements of antioxidant food protein hydrolysates. International Journal of Molecular Sciences 12(5), 3148-3161. https://doi.org/10.3390/ijms12053148
  28. Ness AR and Powles JW. (1997) Fruit and vegetables, and cardiovascular disease: a review. Int. J. Epidemiol. 26, 1-13. https://doi.org/10.1093/ije/26.1.1
  29. Halliwell B. (1999) Antioxidant defense mechanisms: from the beginning to the end. Free Radic. Res. 31, 261-272. https://doi.org/10.1080/10715769900300841
  30. Adler-Nissen J. (1986) Enzymic hydrolysis of food proteins. Elsevier Applied Science Publishers. Barking
  31. Liu Q, Kong B, Xiong YL, Xia X. (2010) Antioxidant activity and functional properties of porcine plasma protein hydrolysate as influenced by the degree of hydrolysis. Food Chem. 118, 403-410. https://doi.org/10.1016/j.foodchem.2009.05.013
  32. Miller NJ and Rice-evans CA. (1996) Spectrophotometric determination of antioxidant activity. Redox Report. 2(3), 161-171. https://doi.org/10.1080/13510002.1996.11747044
  33. Sanchez-Moreno C, Larrauri JA, Saura-calixto F. (1998) A procedure to measure the antiradical efficiency of polyphenols. J Sci Food Agric. 76(2), 270-276. https://doi.org/10.1002/(SICI)1097-0010(199802)76:2<270::AID-JSFA945>3.0.CO;2-9
  34. Cano A, Acosta M, Arnao MB. (2000) A method to measure antioxidant activity in organic media: application to lipophilic vitamins. Redox Report. 5, 365-370. https://doi.org/10.1179/135100000101535933
  35. Sharma B, Handique PJ, Devi HS. (2015) Antioxidant aproperties, physico-chemical characteristics and proximate composition of five wild fruits of Manipur, India. J Food Sci Technol. 52(2), 894-902. https://doi.org/10.1007/s13197-013-1128-2
  36. Wang T, Jonsdottir R., Kristinsson HG, Hreggvidsson GO, Jonsson JO, Thorkelsson G, Olafsdottire G. (2010) Enzyme-enhanced extraction of antioxidant ingredients from red algae Palmaria palmate. LWT-Food Sci Technol. 43, 1387-1393. https://doi.org/10.1016/j.lwt.2010.05.010
  37. Shin DH. (1998) Antioxidation substances in mulberry leaf. J Korean Oil Chem Soc. 16, 27-31.
  38. Kodama T, Ishida H, Kokubo T, Yamakawa T, Noguchi H. (1990) Glucosylation of quercetin by a cell suspension culture of vitis species. Agric Biol Chem 54, 3238-3288.
  39. Chae JY, Lee JY, Hoang IS, Whangbo D, Choi PW, Lee WC, Kim JW, Kim SY, Choi SW, Rhee SJ. (2003) Analysis of functional components of leaf of different mulberry cultivars. J Korean Soc Food Sci Nutr. 32, 15-21. https://doi.org/10.3746/jkfn.2003.32.1.015

Cited by

  1. Optimal Condition of Natural Silk 3D Matrix Production by Silkworm Spinning vol.35, pp.2, 2017, https://doi.org/10.7852/ijie.2017.35.2.83
  2. Effect of enzyme treatment on the DSC and TGA behavior of silkworm powder vol.37, pp.1, 2018, https://doi.org/10.7852/ijie.2018.37.1.29
  3. A comparative study on the phytochemical and anti-oxidant activity differences in HongJam prepared with various silkworm varieties vol.41, pp.2, 2020, https://doi.org/10.7852/ijie.2020.41.2.19