참고문헌
- Burzyn, D., Kuswanto, W., Kolodin, D., Shadrach, J.L., Cerletti, M., Jang, Y., Sefik, E., Tan, T.G., Wagers, A.J., Benoist, C., et al. (2013). A special population of regulatory T cells potentiates muscle repair. Cell 155, 1282-1295. https://doi.org/10.1016/j.cell.2013.10.054
- Campbell, D.J., and Koch, M.A. (2011). Phenotypical and functional specialization of FOXP3+ regulatory T cells. Nat. Rev. Immunol. 11, 119-130. https://doi.org/10.1038/nri2916
- Chaudhry, A., Rudra, D., Treuting, P., Samstein, R.M., Liang, Y., Kas, A., and Rudensky, A.Y. (2009). CD4+ regulatory T cells control TH17 responses in a Stat3-dependent manner. Science 326, 986-991. https://doi.org/10.1126/science.1172702
- Chung, Y., Tanaka, S., Chu, F., Nurieva, R.I., Martinez, G.J., Rawal, S., Wang, Y.H., Lim, H., Reynolds, J.M., Zhou, X.H., et al. (2011). Follicular regulatory T cells expressing Foxp3 and Bcl-6 suppress germinal center reactions. Nat. Med. 17, 983-988. https://doi.org/10.1038/nm.2426
- Cipolletta, D., Feuerer, M., Li, A., Kamei, N., Lee, J., Shoelson, S.E., Benoist, C., and Mathis, D. (2012). PPAR-gamma is a major driver of the accumulation and phenotype of adipose tissue Treg cells. Nature 486, 549-553. https://doi.org/10.1038/nature11132
- Dickson, K.M., Gustafson, C.B., Young, J.I., Zuchner, S., and Wang, G. (2013). Ascorbate-induced generation of 5-hydroxymethylcytosine is unaffected by varying levels of iron and 2-oxoglutarate. Biochem. Biophys. Res. Commun. 439, 522-527. https://doi.org/10.1016/j.bbrc.2013.09.010
- Feng, Y., Arvey, A., Chinen, T., van der Veeken, J., Gasteiger, G., and Rudensky, A.Y. (2014). Control of the inheritance of regulatory T cell identity by a cis element in the Foxp3 locus. Cell 158, 749-763. https://doi.org/10.1016/j.cell.2014.07.031
- Floess, S., Freyer, J., Siewert, C., Baron, U., Olek, S., Polansky, J., Schlawe, K., Chang, H.D., Bopp, T., Schmitt, E., et al. (2007). Epigenetic control of the foxp3 locus in regulatory T cells. PLoS Biol. 5, e38. https://doi.org/10.1371/journal.pbio.0050038
- Fontenot, J.D., Gavin, M.A., and Rudensky, A.Y. (2003). Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat. Immunol. 4, 330-336. https://doi.org/10.1038/ni904
- Han, J.A., An, J., and Ko, M. (2015). Functions of TET proteins in hematopoietic transformation. Mol. Cells 38, 925-935.
- Hansmann, L., Schmidl, C., Boeld, T.J., Andreesen, R., Hoffmann, P., Rehli, M., and Edinger, M. (2010). Isolation of intact genomic DNA from FOXP3-sorted human regulatory T cells for epigenetic analyses. Eur. J. Immunol. 40, 1510-1512. https://doi.org/10.1002/eji.200940154
- Hori, S., Nomura, T., and Sakaguchi, S. (2003). Control of regulatory T cell development by the transcription factor Foxp3. Science 299, 1057-1061. https://doi.org/10.1126/science.1079490
- Huehn, J., and Beyer, M. (2015). Epigenetic and transcriptional control of Foxp3+ regulatory T cells. Semin. Immunol. 27, 10-18. https://doi.org/10.1016/j.smim.2015.02.002
- Huehn, J., Polansky, J.K., and Hamann, A. (2009). Epigenetic control of FOXP3 expression: the key to a stable regulatory T-cell lineage? Nat. Rev. Immunol. 9, 83-89. https://doi.org/10.1038/nri2474
- Jeltsch, A., and Jurkowska, R.Z. (2014). New concepts in DNA methylation. Trends Biochem. Sci. 39, 310-318. https://doi.org/10.1016/j.tibs.2014.05.002
- Josefowicz, S.Z., Wilson, C.B., and Rudensky, A.Y. (2009). Cutting edge: TCR stimulation is sufficient for induction of Foxp3 expression in the absence of DNA methyltransferase 1. J. Immunol. 182, 6648-6652. https://doi.org/10.4049/jimmunol.0803320
- Kim, H.P., and Leonard, W.J. (2007). CREB/ATF-dependent T cell receptor-induced FoxP3 gene expression: a role for DNA methylation. J. Exp. Med. 204, 1543-1551. https://doi.org/10.1084/jem.20070109
- Kim, K.Y., Lee, G., Yoon, M., Cho, E.H., Park, C.S., and Kim, M.G. (2015). Expression analyses revealed thymic stromal cotransporter/ Slc46A2 is in stem cell populations and is a putative tumor suppressor. Mol. Cells 38, 548-561. https://doi.org/10.14348/molcells.2015.0044
- Ko, M., Huang, Y., Jankowska, A.M., Pape, U.J., Tahiliani, M., Bandukwala, H.S., An, J., Lamperti, E.D., Koh, K.P., Ganetzky, R., et al. (2010). Impaired hydroxylation of 5-methylcytosine in myeloid cancers with mutant TET2. Nature 468, 839-843. https://doi.org/10.1038/nature09586
- Koch, M.A., Tucker-Heard, G., Perdue, N.R., Killebrew, J.R., Urdahl, K.B., and Campbell, D.J. (2009). The transcription factor T-bet controls regulatory T cell homeostasis and function during type 1 inflammation. Nat. Immunol. 10, 595-602. https://doi.org/10.1038/ni.1731
- Li, X., Liang, Y., LeBlanc, M., Benner, C., and Zheng, Y. (2014). Function of a Foxp3 cis-element in protecting regulatory T cell identity. Cell 158, 734-748. https://doi.org/10.1016/j.cell.2014.07.030
- Linterman, M.A., Pierson, W., Lee, S.K., Kallies, A., Kawamoto, S., Rayner, T.F., Srivastava, M., Divekar, D.P., Beaton, L., Hogan, J.J., et al. (2011). Foxp3+ follicular regulatory T cells control the germinal center response. Nat. Med. 17, 975-982. https://doi.org/10.1038/nm.2425
- Malek, T.R. (2008). The biology of interleukin-2. Annu. Rev. Immunol. 26, 453-479. https://doi.org/10.1146/annurev.immunol.26.021607.090357
- Mantei, A., Rutz, S., Janke, M., Kirchhoff, D., Jung, U., Patzel, V., Vogel, U., Rudel, T., Andreou, I., Weber, M., et al. (2008). siRNA stabilization prolongs gene knockdown in primary T lymphocytes. Eur. J. Immunol. 38, 2616-2625. https://doi.org/10.1002/eji.200738075
- Miyao, T., Floess, S., Setoguchi, R., Luche, H., Fehling, H.J., Waldmann, H., Huehn, J., and Hori, S. (2012). Plasticity of Foxp3(+) T cells reflects promiscuous Foxp3 expression in conventional T cells but not reprogramming of regulatory T cells. Immunity 36, 262-275. https://doi.org/10.1016/j.immuni.2011.12.012
- Moran-Crusio, K., Reavie, L., Shih, A., Abdel-Wahab, O., Ndiaye-Lobry, D., Lobry, C., Figueroa, M.E., Vasanthakumar, A., Patel, J., Zhao, X., et al. (2011). Tet2 loss leads to increased hematopoietic stem cell self-renewal and myeloid transformation. Cancer Cell 20, 11-24. https://doi.org/10.1016/j.ccr.2011.06.001
- Ohkura, N., Hamaguchi, M., Morikawa, H., Sugimura, K., Tanaka, A., Ito, Y., Osaki, M., Tanaka, Y., Yamashita, R., Nakano, N., et al. (2012). T cell receptor stimulation-induced epigenetic changes and Foxp3 expression are independent and complementary events required for Treg cell development. Immunity 37, 785-799. https://doi.org/10.1016/j.immuni.2012.09.010
- Ohnmacht, C., Park, J.H., Cording, S., Wing, J.B., Atarashi, K., Obata, Y., Gaboriau-Routhiau, V., Marques, R., Dulauroy, S., Fedoseeva, M., et al. (2015). MUCOSAL IMMUNOLOGY. The microbiota regulates type 2 immunity through RORgammat(+) T cells. Science 349, 989-993. https://doi.org/10.1126/science.aac4263
- Piper, C., Pesenacker, A.M., Bending, D., Thirugnanabalan, B., Varsani, H., Wedderburn, L.R., and Nistala, K. (2014). T cell expression of granulocyte-macrophage colony-stimulating factor in juvenile arthritis is contingent upon Th17 plasticity. Arthritis Rheumatol. 66, 1955-1960. https://doi.org/10.1002/art.38647
- Polansky, J.K., Kretschmer, K., Freyer, J., Floess, S., Garbe, A., Baron, U., Olek, S., Hamann, A., von Boehmer, H., and Huehn, J. (2008). DNA methylation controls Foxp3 gene expression. Eur. J. Immunol. 38, 1654-1663. https://doi.org/10.1002/eji.200838105
- Sakaguchi, S., Vignali, D.A., Rudensky, A.Y., Niec, R.E., and Waldmann, H. (2013). The plasticity and stability of regulatory T cells. Nat. Rev. Immunol. 13, 461-467. https://doi.org/10.1038/nri3464
- Sasidharan Nair, V., Song, M.H., and Oh, K.I. (2016). Vitamin C Facilitates Demethylation of the Foxp3 Enhancer in a Tet- Dependent Manner. J. Immunol. 196, 2119-2131. https://doi.org/10.4049/jimmunol.1502352
- Sefik, E., Geva-Zatorsky, N., Oh, S., Konnikova, L., Zemmour, D., McGuire, A.M., Burzyn, D., Ortiz-Lopez, A., Lobera, M., Yang, J., et al. (2015). MUCOSAL IMMUNOLOGY. Individual intestinal symbionts induce a distinct population of RORgamma(+) regulatory T cells. Science 349, 993-997. https://doi.org/10.1126/science.aaa9420
- Toker, A., Engelbert, D., Garg, G., Polansky, J.K., Floess, S., Miyao, T., Baron, U., Duber, S., Geffers, R., Giehr, P., et al. (2013). Active demethylation of the Foxp3 locus leads to the generation of stable regulatory T cells within the thymus. J. Immunol. 190, 3180-3188. https://doi.org/10.4049/jimmunol.1203473
- Wang, Y., Su, M.A., and Wan, Y.Y. (2011). An essential role of the transcription factor GATA-3 for the function of regulatory T cells. Immunity 35, 337-348. https://doi.org/10.1016/j.immuni.2011.08.012
- Wang, L., Liu, Y., Beier, U.H., Han, R., Bhatti, T.R., Akimova, T., and Hancock, W.W. (2013). Foxp3+ T-regulatory cells require DNA methyltransferase 1 expression to prevent development of lethal autoimmunity. Blood 121, 3631-3639. https://doi.org/10.1182/blood-2012-08-451765
- Wieczorek, G., Asemissen, A., Model, F., Turbachova, I., Floess, S., Liebenberg, V., Baron, U., Stauch, D., Kotsch, K., Pratschke, J., et al. (2009). Quantitative DNA methylation analysis of FOXP3 as a new method for counting regulatory T cells in peripheral blood and solid tissue. Cancer Res. 69, 599-608. https://doi.org/10.1158/0008-5472.CAN-08-2361
- Yang, X.P., Ghoreschi, K., Steward-Tharp, S.M., Rodriguez-Canales, J., Zhu, J., Grainger, J.R., Hirahara, K., Sun, H.W., Wei, L., Vahedi, G., et al. (2011). Opposing regulation of the locus encoding IL-17 through direct, reciprocal actions of STAT3 and STAT5. Nat. Immunol. 12, 247-254. https://doi.org/10.1038/ni.1995
- Yang, R., Qu, C., Zhou, Y., Konkel, J.E., Shi, S., Liu, Y., Chen, C., Liu, S., Liu, D., Chen, Y., et al. (2015). Hydrogen Sulfide Promotes Tet1- and Tet2-Mediated Foxp3 Demethylation to Drive Regulatory T Cell Differentiation and Maintain Immune Homeostasis. Immunity 43, 251-263. https://doi.org/10.1016/j.immuni.2015.07.017
- Yue, X., Trifari, S., Aijo, T., Tsagaratou, A., Pastor, W.A., Zepeda-Martinez, J.A., Lio, C.W., Li, X., Huang, Y., Vijayanand, P., et al. (2016). Control of Foxp3 stability through modulation of TET activity. J. Exp. Med. 213, 377-397. https://doi.org/10.1084/jem.20151438
- Zheng, Y., Josefowicz, S., Chaudhry, A., Peng, X.P., Forbush, K., and Rudensky, A.Y. (2010). Role of conserved non-coding DNA elements in the Foxp3 gene in regulatory T-cell fate. Nature 463, 808-812. https://doi.org/10.1038/nature08750
피인용 문헌
- Stabilization of Foxp3 expression by CRISPR-dCas9-based epigenome editing in mouse primary T cells vol.10, pp.1, 2017, https://doi.org/10.1186/s13072-017-0129-1
- Alloantigen-Induced Regulatory T Cells Generated in Presence of Vitamin C Display Enhanced Stability of Foxp3 Expression and Promote Skin Allograft Acceptance vol.8, 2017, https://doi.org/10.3389/fimmu.2017.00748
- The regulation of immune tolerance by FOXP3 2017, https://doi.org/10.1038/nri.2017.75
- Unravelling the molecular basis for regulatory T-cell plasticity and loss of function in disease vol.7, pp.2, 2018, https://doi.org/10.1002/cti2.1011
- DNA methylation and repressive histones in the promoters of PD-1, CTLA-4, TIM-3, LAG-3, TIGIT, PD-L1, and galectin-9 genes in human colorectal cancer vol.10, pp.1, 2018, https://doi.org/10.1186/s13148-018-0539-3
- DNA methylation and repressive H3K9 and H3K27 trimethylation in the promoter regions of PD-1, CTLA-4, TIM-3, LAG-3, TIGIT, and PD-L1 genes in human primary breast cancer vol.10, pp.1, 2018, https://doi.org/10.1186/s13148-018-0512-1
- Critical Role of TGF-β and IL-2 Receptor Signaling in Foxp3 Induction by an Inhibitor of DNA Methylation vol.9, pp.1664-3224, 2018, https://doi.org/10.3389/fimmu.2018.00125
- PD-L1 Expression in Human Breast Cancer Stem Cells Is Epigenetically Regulated through Posttranslational Histone Modifications vol.2019, pp.1687-8469, 2019, https://doi.org/10.1155/2019/3958908
- Anergy into T regulatory cells: an integration of metabolic cues and epigenetic changes at the Foxp3 conserved non-coding sequence 2 vol.7, pp.None, 2016, https://doi.org/10.12688/f1000research.16551.1
- TET2 facilitates PPARγ agonist–mediated gene regulation and insulin sensitization in adipocytes vol.89, pp.None, 2018, https://doi.org/10.1016/j.metabol.2018.08.006
- Foxp3 expression in induced regulatory T cells is stabilized by C/EBP in inflammatory environments vol.19, pp.12, 2018, https://doi.org/10.15252/embr.201845995
- DNA Methylation of Enhancer Elements in Myeloid Neoplasms: Think Outside the Promoters? vol.11, pp.10, 2016, https://doi.org/10.3390/cancers11101424
- Dysregulation of the TET family of epigenetic regulators in lymphoid and myeloid malignancies vol.134, pp.18, 2019, https://doi.org/10.1182/blood.2019791475
- Vitamin C stabilizes CD8+ iTregs and enhances their therapeutic potential in controlling murine GVHD and leukemia relapse vol.3, pp.24, 2019, https://doi.org/10.1182/bloodadvances.2019000531
- Molecular Insights Into Regulatory T-Cell Adaptation to Self, Environment, and Host Tissues: Plasticity or Loss of Function in Autoimmune Disease vol.11, pp.None, 2020, https://doi.org/10.3389/fimmu.2020.01269
- A comparative view on vitamin C effects on αβ‐ versus γδ T‐cell activation and differentiation vol.107, pp.6, 2020, https://doi.org/10.1002/jlb.1mr1219-245r
- DNMT1-mediated Foxp3 gene promoter hypermethylation involved in immune dysfunction caused by arsenic in human lymphocytes vol.9, pp.4, 2016, https://doi.org/10.1093/toxres/tfaa056
- Epigenetically modifying the Foxp3 locus for generation of stable antigen‐specific Tregs as cellular therapeutics vol.20, pp.9, 2016, https://doi.org/10.1111/ajt.15845
- DL-propargylglycine administration inhibits TET2 and FOXP3 expression and alleviates symptoms of neonatal Cows’ milk allergy in mouse model vol.53, pp.8, 2016, https://doi.org/10.1080/08916934.2020.1836490
- Redox regulation of regulatory T-cell differentiation and functions vol.54, pp.11, 2020, https://doi.org/10.1080/10715762.2020.1745202
- DNA methylation in the promoters of PD-L1, MMP9, ARG1, galectin-9, TIM-3, VISTA and TGF-β genes in HLA-DR – myeloid cells, compared with HLA-DR + antigen-presenting vol.15, pp.12, 2016, https://doi.org/10.1080/15592294.2020.1767373
- TET-Mediated Epigenetic Regulation in Immune Cell Development and Disease vol.8, pp.None, 2016, https://doi.org/10.3389/fcell.2020.623948
- Highly Purified Alloantigen-Specific Tregs From Healthy and Chronic Kidney Disease Patients Can Be Long-Term Expanded, Maintaining a Suppressive Phenotype and Function in the Presence of Inflammatory vol.12, pp.None, 2016, https://doi.org/10.3389/fimmu.2021.686530
- Vitamin C, From Supplement to Treatment: A Re-Emerging Adjunct for Cancer Immunotherapy? vol.12, pp.None, 2016, https://doi.org/10.3389/fimmu.2021.765906
- Deciphering the multifaceted roles of TET proteins in T‐cell lineage specification and malignant transformation vol.300, pp.1, 2016, https://doi.org/10.1111/imr.12940