• Title/Summary/Keyword: DNA demethylation

Search Result 49, Processing Time 0.031 seconds

Enzymatic DNA oxidation: mechanisms and biological significance

  • Xu, Guo-Liang;Walsh, Colum P.
    • BMB Reports
    • /
    • v.47 no.11
    • /
    • pp.609-618
    • /
    • 2014
  • DNA methylation at cytosines (5mC) is a major epigenetic modification involved in the regulation of multiple biological processes in mammals. How methylation is reversed was until recently poorly understood. The family of dioxygenases commonly known as Ten-eleven translocation (Tet) proteins are responsible for the oxidation of 5mC into three new forms, 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC). Current models link Tet-mediated 5mC oxidation with active DNA demethylation. The higher oxidation products (5fC and 5caC) are recognized and excised by the DNA glycosylase TDG via the base excision repair pathway. Like DNA methyltransferases, Tet enzymes are important for embryonic development. We will examine the mechanism and biological significance of Tet-mediated 5mC oxidation in the context of pronuclear DNA demethylation in mouse early embryos. In contrast to its role in active demethylation in the germ cells and early embryo, a number of lines of evidence suggest that the intragenic 5hmC present in brain may act as a stable mark instead. This short review explores mechanistic aspects of TET oxidation activity, the impact Tet enzymes have on epigenome organization and their contribution to the regulation of early embryonic and neuronal development.

DNA Demethylation of the Foxp3 Enhancer Is Maintained through Modulation of Ten-Eleven-Translocation and DNA Methyltransferases

  • Nair, Varun Sasidharan;Song, Mi Hye;Ko, Myunggon;Oh, Kwon Ik
    • Molecules and Cells
    • /
    • v.39 no.12
    • /
    • pp.888-897
    • /
    • 2016
  • Stable expression of Foxp3 is ensured by demethylation of CpG motifs in the Foxp3 intronic element, the conserved non-coding sequence 2 (CNS2), which persists throughout the lifespan of regulatory T cells (Tregs). However, little is known about the mechanisms on how CNS2 demethylation is sustained. In this study, we found that Ten-Eleven-Translocation (Tet) DNA dioxygenase protects the CpG motifs of CNS2 from re-methylation by DNA methyltransferases (Dnmts) and prevents Tregs from losing Foxp3 expression under inflammatory conditions. Upon stimulation of Tregs by interleukin-6 (IL6), Dnmt1 was recruited to CNS2 and induced methylation, which was inhibited by Tet2 recruited by IL2. Tet2 prevented CNS2 re-methylation by not only the occupancy of the CNS2 locus but also by its enzymatic activity. These results show that the CNS2 methylation status is dynamically regulated by a balance between Tets and Dnmts which influences the expression of Foxp3 in Tregs.

Global DNA Methylation of Porcine Embryos during Preimplantation Development

  • Yeo, S.E.;Kang, Y.K.;Koo, D.B.;Han, J.S.;Yu, K.;Kim, C.H.;Park, H.;Chang, W.K.;Lee, K.K.;Han, Y.M.
    • Korean Journal of Animal Reproduction
    • /
    • v.27 no.4
    • /
    • pp.309-315
    • /
    • 2003
  • DNA methylation at CpG sites, which is a epigenetic modification, is associated with gene expression without change of DNA sequences. During early mouse embryogenesis, dynamic changes of DNA methylation occur. In this study, DNA methylation patterns of porcine embryos produced in vivo and in vitro were examined at various developmental stages by the immunocytochemical staining method. Interestingly, active demethylation was not observed on the paternal pronucleus of porcine zygotes. However, differences were detected in the passive demethylation process between in vivo and in vitro embryos. There was no change in the DNA methylation state until the blastocyst stage of in vivo embryos, whereas partial demethylation was observed in several blastomeres from a 4 cell stage to a morula stage of in vitro embryos. The whole genome of inner cell mass (ICM) and trophectoderm (TE) cells in porcine blastocysts were evenly methylated without de novo methylation. Our findings demonstrate that genome-wide demethylation does not occur in pig embryos during preimplantation development unlike murine and bovine embryos. It indicates that the machinery regulating epigenetic reprogramming may be different between species.

DNA microarray analysis of RNAi plant regulated expression of NtROS2a gene encoding cytosine DNA demethylation (시토신 탈메틸화 관련 NtROS2a 유전자 발현을 제어한 RNAi 식물의 DNA microarray 분석)

  • Choi, Jang Sun;Lee, In Hye;Jung, Yu Jin;Kang, Kwon Kyoo
    • Journal of Plant Biotechnology
    • /
    • v.43 no.2
    • /
    • pp.231-239
    • /
    • 2016
  • To study the transcript levels of epigenetically regulated genes in tobacco, we have developed a transgenic line OX1 overexpressing NtROS2a gene encoding cytosine DNA demethylation and a RNAi plant line RNAi13. It has been reported that salt- and $H_2O_2$-stress tolerance of these transgenic lines are enhanced with various phenotypic characters (Lee et al. 2015). In this paper, we conducted microarray analysis with Agilent Tobacco 4 x 44K oligo chip by using overexpression line OX1, RNAi plant line RNAi 13, and wild type plant WT. Differentially expressed genes (DEGs) related to metabolism, nutrient supply, and various stressed were up-regulated by approximately 1.5- to 80- fold. DEGs related to co-enzymes, metabolism, and methylation functional genes were down-regulated by approximately 0.03- to 0.7- fold. qRT-PCR analysis showed that the transcript levels of several candidate genes in OX1 and RNAi lines were significantly (p < 0.05) higher than those in WT, such as genes encoding KH domain-containing protein, MADS-box protein, and Zinc phosphodiesterase ELAC protein. On the other hand, several genes such as those encoding pentatricopeptide (PPR) repeat-containing protein, histone deacetylase HDAC3 protein, and protein kinase were decreased by approximately 0.4- to 1.0- fold. This study showed that NtROS2a gene encoding DNA glycosylase related to demethylation could regulate adaptive response of tobacco at transcriptional level.

Promoter demethylation mediates the expression of ZNF645, a novel cancer/testis gene

  • Bai, Gang;Liu, Yunqiang;Zhang, Hao;Su, Dan;Tao, Dachang;Yang, Yuan;Ma, Yongxin;Zhang, Sizhong
    • BMB Reports
    • /
    • v.43 no.6
    • /
    • pp.400-406
    • /
    • 2010
  • Cancer/testis (CT) antigens exhibit highly tissue-restricted expression and are considered promising targets for cancer vaccines. Here we identified a novel CT gene ZNF645 which restrictively expresses in normal human testes and lung cancer patients (68.3%). To investigate the promoter methylation status of ZNF645, we carried out bisulfite genomic sequencing and found that the CpG island in its promoter was heavily methylated in normal lung tissues without the expression of ZNF645, whereas there was high demethylation in normal human testes and lung carcinoma tissues with its expression. Also ZNF645 could be remarkably activated in A549 and HEK293T cells treated by DNA demethylation agent 5'-aza-2'-deoxycytidine. And the dual luciferase assay revealed that the promoter activity of the ZNF645 was inhibited by methylation of the CpG island region. Therefore, we proposed that ZNF645 is a CT gene and activated in human testis and lung cancers by demethylation of its promoter region.

Epigenetics by DNA Methylation for Normal and Cloned Animal Development

  • Shiota, Kunio
    • Proceedings of the Korean Society of Developmental Biology Conference
    • /
    • 2003.10a
    • /
    • pp.26-28
    • /
    • 2003
  • "Epigenetics" means the study of heritable changes in gene-activity without changes in DNA sequences. Methylation of the cytosine residue in a CpG dinucleotide sequence is a characteristic of the vertebrate genome. In vertebrates, methylation of DNA mainly occurs at the 5′-position of cytosine in a CpG dinucleotide forming 5-methylcytosine. Methylation of DNA plays a profound role in transcriptional repression of gene expression through several mechanisms. Generally, DNA of inactive genes is more heavily methylated than that of active ones; conversely demethylation of DNA reactivates gene expression in vivo and in vitro.

  • PDF

Direct reprogramming of fibroblasts into diverse lineage cells by DNA demethylation followed by differentiating cultures

  • Yang, Dong-Wook;Moon, Jung-Sun;Ko, Hyun-Mi;Shin, Yeo-Kyeong;Fukumoto, Satoshi;Kim, Sun-Hun;Kim, Min-Seok
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.24 no.6
    • /
    • pp.463-472
    • /
    • 2020
  • Direct reprogramming, also known as a trans-differentiation, is a technique to allow mature cells to be converted into other types of cells without inducing a pluripotent stage. It has been suggested as a major strategy to acquire the desired type of cells in cell-based therapies to repair damaged tissues. Studies related to switching the fate of cells through epigenetic modification have been progressing and they can bypass safety issues raised by the virus-based transfection methods. In this study, a protocol was established to directly convert fully differentiated fibroblasts into diverse mesenchymal-lineage cells, such as osteoblasts, adipocytes, chondrocytes, and ectodermal cells, including neurons, by means of DNA demethylation, immediately followed by culturing in various differentiating media. First, 24 h exposure of 5-azacytidine (5-aza-CN), a well-characterized DNA methyl transferase inhibitor, to NIH-3T3 murine fibroblast cells induced the expression of stem-cell markers, that is, increasing cell plasticity. Next, 5-aza-CN treated fibroblasts were cultured in osteogenic, adipogenic, chondrogenic, and neurogenic media with or without bone morphogenetic protein 2 for a designated period. Differentiation of each desired type of cell was verified by quantitative reverse transcriptase-polymerase chain reaction/western blot assays for appropriate marker expression and by various staining methods, such as alkaline phosphatase/alizarin red S/oil red O/alcian blue. These proposed procedures allowed easier acquisition of the desired cells without any transgenic modification, using direct reprogramming technology, and thus may help make it more available in the clinical fields of regenerative medicine.

Epigenetic Reprogramming in Cloned Embryos

  • Kang, Yong-Kook;Han, Yong-Mahn;Lee, Kyung-Kwang
    • Proceedings of the KSAR Conference
    • /
    • 2001.10a
    • /
    • pp.25-31
    • /
    • 2001
  • During early development, a dramatic reduction in methylation levels occurs in mouse (Monk et al., 1987). The process of epigenetic reprogramming in early embryos erases gamete-specific methylation patterns inherited from the parents (Howlett & Reik 1991, Monk et al., 1987, Oswald et al., 2000, Sanford et al., 1984). This genome-wide demethylation process may be a prerequisite for the formation of pluripotent stem cells that are important for the later development (Reik & Surani 1997). During post-implantation development, a wave of de novo methylation takes place; most of the genomic DNA is methylated at defined developmental timepoints, whereas tissue-specific genes undergo demethylation in their tissues of expression (Kafri et al., 1992, Razin & Kafri 1994). Another demethylation-remethylation cycle of epigenetic reprogramming takes place during gametogenesis and is necessary for resetting of genomic imprinting (Solter 1988). The dynamic epigenetic reprogramming events appear to be basic and are probably conserved in eutherian mammals (see below). (omitted)

  • PDF

Influence of Oocyte Nuclei on Demethylation of Donor Genome in Cloned Bovine Embryos

  • Y.K. Kang;D.B Koo;Park, J.S.;Park, Y.H.;Lee, K.K.;Y.M. Han
    • Proceedings of the KSAR Conference
    • /
    • 2001.03a
    • /
    • pp.15-15
    • /
    • 2001
  • We recently demonstrated that satellite regions exhibit an aberrant DNA methylation in cloned bovine embryos. Here, we examined, using bisulfite -sequencing technology, whether the inefficient demethylation of cloned donor genomes could be rescued by the presence of oocytic nuclei. Both AciI digestion and sequencing analyses showed that satellite sequence was demethylated more efficiently in cloned tetraploid blastocysts than in diploid clones. When methyl -CpG density (the number of methyl-CpG sites per string) was scored, a significant decrease was observed In tetraploids (P<0.001). These results suggest that unknown mechanisms provided by oocytic nuclei could assist the demethylation of satellite sequences in tetraploid clones.

  • PDF

Ten-eleven translocation 1 mediating DNA demethylation regulates the proliferation of chicken primordial germ cells through the activation of Wnt4/β-catenin signaling pathway

  • Yinglin Lu;Ming Li;Heng Cao;Jing Zhou;Fan Li;Debing Yu;Minli Yu
    • Animal Bioscience
    • /
    • v.37 no.3
    • /
    • pp.471-480
    • /
    • 2024
  • Objective: The objective of this study was to investigate the regulation relationship of Ten-eleven translocation 1 (Tet1) in DNA demethylation and the proliferation of primordial germ cells (PGCs) in chickens. Methods: siRNA targeting Tet1 was used to transiently knockdown the expression of Tet1 in chicken PGCs, and the genomic DNA methylation status was measured. The proliferation of chicken PGCs was detected by flow cytometry analysis and cell counting kit-8 assay when activation or inhibition of Wnt4/β-catenin signaling pathway. And the level of DNA methylation and hisotne methylation was also tested. Results: Results revealed that knockdown of Tet1 inhibited the proliferation of chicken PGCs and downregulated the mRNA expression of Cyclin D1 and cyclin-dependent kinase 6 (CDK6), as well as pluripotency-associated genes (Nanog, PouV, and Sox2). Flow cytometry analysis confirmed that the population of PGCs in Tet1 knockdown group displayed a significant decrease in the proportion of S and G2 phase cells, which meant that there were less PGCs entered the mitosis process than that of control. Furthermore, Tet1 knockdown delayed the entrance to G1/S phase and this inhibition was rescued by treated with BIO. Consistent with these findings, Wnt/β-catenin signaling was inactivated in Tet1 knockdown PGCs, leading to aberrant proliferation. Further analysis showed that the methylation of the whole genome increased significantly after Tet1 downregulation, while hydroxyl-methylation obviously declined. Meanwhile, the level of H3K27me3 was upregulated and H3K9me2 was downregulated in Tet1 knockdown PGCs, which was achieved by regulating Wnt/β-catenin signaling pathway. Conclusion: These results suggested that the self-renewal of chicken PGCs and the maintenance of their characteristics were regulated by Tet1 mediating DNA demethylation through the activation of Wnt4/β-catenin signaling pathway.