DOI QR코드

DOI QR Code

Imaging Single-mRNA Localization and Translation in Live Neurons

  • Lee, Byung Hun (Department of Physics and Astronomy, Seoul National University) ;
  • Bae, Seong-Woo (Department of Physics and Astronomy, Seoul National University) ;
  • Shim, Jaeyoun Jay (Department of Physics and Astronomy, Seoul National University) ;
  • Park, Sung Young (Center for RNA Research, Institute for Basic Science) ;
  • Park, Hye Yoon (Department of Physics and Astronomy, Seoul National University)
  • Received : 2016.11.16
  • Accepted : 2016.12.21
  • Published : 2016.12.31

Abstract

Local protein synthesis mediates precise spatio-temporal regulation of gene expression for neuronal functions such as long-term plasticity, axon guidance and regeneration. To reveal the underlying mechanisms of local translation, it is crucial to understand mRNA transport, localization and translation in live neurons. Among various techniques for mRNA analysis, fluorescence microscopy has been widely used as the most direct method to study localization of mRNA. Live-cell imaging of single RNA molecules is particularly advantageous to dissect the highly heterogeneous and dynamic nature of messenger ribonucleoprotein (mRNP) complexes in neurons. Here, we review recent advances in the study of mRNA localization and translation in live neurons using novel techniques for single-RNA imaging.

Keywords

References

  1. Aakalu, G., Smith, W.B., Nguyen, N., Jiang, C., and Schuman, E.M. (2001). Dynamic visualization of local protein synthesis in hippocampal neurons. Neuron 30, 489-502. https://doi.org/10.1016/S0896-6273(01)00295-1
  2. Alami, N.H., Smith, R.B., Carrasco, M.A., Williams, L.A., Winborn, C.S., Han, S.S.W., Kiskinis, E., Winborn, B., Freibaum, B.D., Kanagaraj, A., et al. (2014). Axonal transport of TDP-43 mRNA granules is impaired by ALS-causing mutations. Neuron 81, 536-543. https://doi.org/10.1016/j.neuron.2013.12.018
  3. Bi, J., Tsai, N.P., Lin, Y.P., Loh, H.H., and Wei, L.N. (2006). Axonal mRNA transport and localized translational regulation of kappaopioid receptor in primary neurons of dorsal root ganglia. Proc. Natl. Acad. Sci. USA 103, 19919-19924. https://doi.org/10.1073/pnas.0607394104
  4. Bunge, M.B. (1973). Fine structure of nerve fibers and growth cones of isolated sympathetic neurons in culture. J. Cell Biol. 56, 713-735. https://doi.org/10.1083/jcb.56.3.713
  5. Buxbaum, A.R., Yoon, Y.J., Singer, R.H., and Park, H.Y. (2015). Single-molecule insights into mRNA dynamics in neurons. Trends Cell Biol. 25, 468-475. https://doi.org/10.1016/j.tcb.2015.05.005
  6. Cajigas, I.J., Tushev, G., Will, T.J., Dieck, S.T., Fuerst, N., and Schuman, E.M. (2012). The local transcriptome in the synaptic neuropil revealed by deep sequencing and high-resolution imaging. Neuron 74, 453-466. https://doi.org/10.1016/j.neuron.2012.02.036
  7. Campbell, D.S., and Holt, C.E. (2001). Chemotropic responses of retinal growth cones mediated by rapid local protein synthesis and degradation. Neuron 32, 1013-1026. https://doi.org/10.1016/S0896-6273(01)00551-7
  8. Chao, J.A., Yoon, Y.J., and Singer, R.H. (2012). Imaging translation in single cells using fluorescent microscopy. Cold Spring Harb Perspect Biol. 4.
  9. Cosker, K.E., Fenstermacher, S.J., Pazyra-Murphy, M.F., Elliott, H.L., and Segal, R.A. (2016). The RNA-binding protein SFPQ orchestrates an RNA regulon to promote axon viability. Nat. Neurosci. 19, 690-696. https://doi.org/10.1038/nn.4280
  10. Czaplinski, K. (2014). Understanding mRNA trafficking: Are we there yet? Semin. Cell Dev. Biol. 32, 63-70. https://doi.org/10.1016/j.semcdb.2014.04.025
  11. Dictenberg, J.B., Swanger, S.A., Antar, L.N., Singer, R.H., and Bassell, G.J. (2008). A direct role for FMRP in activity-dependent dendritic mRNA transport links filopodial-spine morphogenesis to fragile X syndrome. Dev. Cell 14, 926-939. https://doi.org/10.1016/j.devcel.2008.04.003
  12. Dieterich, D.C., Link, A.J., Graumann, J., Tirrell, D.A., and Schuman, E.M. (2006). Selective identification of newly synthesized proteins in mammalian cells using bioorthogonal noncanonical amino acid tagging (BONCAT). Proc. Natl. Acad. Sci. USA 103, 9482-9487. https://doi.org/10.1073/pnas.0601637103
  13. Doyle, M., and Kiebler, M.A. (2011). Mechanisms of dendritic mRNA transport and its role in synaptic tagging. EMBO J. 30, 3540-3552. https://doi.org/10.1038/emboj.2011.278
  14. Dynes, J.L., and Steward, O. (2007). Dynamics of bidirectional transport of Arc mRNA in neuronal dendrites. J. Comp. Neurol. 500, 433-447. https://doi.org/10.1002/cne.21189
  15. Dynes, J.L., and Steward, O. (2012). Arc mRNA docks precisely at the base of individual dendritic spines indicating the existence of a specialized microdomain for synapse-specific mRNA translation. J. Comp. Neurol. 520, 3105-3119. https://doi.org/10.1002/cne.23073
  16. Eom, T., Antar, L.N., Singer, R.H., and Bassell, G.J. (2003). Localization of a beta-actin messenger ribonucleoprotein complex with zipcode-binding protein modulates the density of dendritic filopodia and filopodial synapses. J. Neurosci. 23, 10433-10444. https://doi.org/10.1523/JNEUROSCI.23-32-10433.2003
  17. Femino, A.M., Fay, F.S., Fogarty, K., and Singer, R.H. (1998). Visualization of single RNA transcripts in situ. Science 280, 585-590. https://doi.org/10.1126/science.280.5363.585
  18. Frey, U., and Morris, R.G.M. (1997). Synaptic tagging and longterm potentiation. Nature 385, 533-536. https://doi.org/10.1038/385533a0
  19. Gumy, L.F., Katrukha, E.A., Kapitein, L.C., and Hoogenraad, C.C. (2014). New insights into mRNA trafficking in axons. Dev. Neurobiol. 74, 233-244. https://doi.org/10.1002/dneu.22121
  20. Halstead, J.M., Lionnet, T., Wilbertz, J.H., Wippich, F., Ephrussi, A., Singer, R.H., and Chao, J.A. (2015). An RNA biosensor for imaging the first round of translation from single cells to living animals. Science 347, 1367-1371. https://doi.org/10.1126/science.aaa3380
  21. Hanus, C., and Schuman, E.M. (2013). Proteostasis in complex dendrites. Nat. Rev. Neurosci. 14, 638-648. https://doi.org/10.1038/nrn3546
  22. Heiman, M., Schaefer, A., Gong, S., Peterson, J.D., Day, M., Ramsey, K.E., Suarez-Farinas, M., Schwarz, C., Stephan, D.A., Surmeier, D.J., et al. (2008). A translational profiling approach for the molecular characterization of CNS cell types. Cell 135, 738-748. https://doi.org/10.1016/j.cell.2008.10.028
  23. Holt, C.E., and Schuman, E.M. (2013). The central dogma decentralized: new perspectives on RNA function and local translation in neurons. Neuron 80, 648-657. https://doi.org/10.1016/j.neuron.2013.10.036
  24. Huttelmaier, S., Zenklusen, D., Lederer, M., Dictenberg, J., Lorenz, M., Meng, X.H., Bassell, G.J., Condeelis, J., and Singer, R.H. (2005). Spatial regulation of beta-actin translation by Srcdependent phosphorylation of ZBP1. Nature 438, 512-515. https://doi.org/10.1038/nature04115
  25. Hutten, S., Sharangdhar, T., and Kiebler, M. (2014). Unmasking the messenger. RNA Biol. 11, 992-997. https://doi.org/10.4161/rna.32091
  26. Ingolia, N.T., Ghaemmaghami, S., Newman, J.R.S., and Weissman, J.S. (2009). Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profiling. Science 324, 218-223. https://doi.org/10.1126/science.1168978
  27. Ingolia, N.T., Lareau, L.F., and Weissman, J.S. (2011). Ribosome profiling of mouse embryonic stem cells reveals the complexity and dynamics of mammalian proteomes. Cell 147, 789-802. https://doi.org/10.1016/j.cell.2011.10.002
  28. Jung, H.S., Yoon, B.C., and Holt, C.E. (2012). Axonal mRNA localization and local protein synthesis in nervous system assembly, maintenance and repair. Nat. Rev. Neurosci. 13, 308-324. https://doi.org/10.1038/nrn3210
  29. Jung, H., Gkogkas, C.G., Sonenberg, N., and Holt, C.E. (2014). Remote control of gene function by local translation. Cell 157, 26-40. https://doi.org/10.1016/j.cell.2014.03.005
  30. Kao, D.I., Aldridge, G.M., Weiler, I.J., and Greenough, W.T. (2010). Altered mRNA transport, docking, and protein translation in neurons lacking fragile X mental retardation protein. Proc. Natl. Acad. Sci. USA 107, 15601-15606. https://doi.org/10.1073/pnas.1010564107
  31. Kim, H.J., Park, J.W., Byun, J.H., Vahidi, B., Rhee, S.W., and Jeon, N.L. (2012). Integrated microfluidics platforms for investigating injury and regeneration of CNS axons. Ann. Biomed. Eng. 40, 1268-1276. https://doi.org/10.1007/s10439-012-0515-6
  32. Kislauskis, E.H., Zhu, X., and Singer, R.H. (1994). Sequences responsible for intracellular localization of beta-actin messenger RNA also affect cell phenotype. J. Cell Biol. 127, 441-451. https://doi.org/10.1083/jcb.127.2.441
  33. Lawrence, J.B., and Singer, R.H. (1985). Quantitative analysis of in situ hybridization methods for the detection of actin gene expression. Nucleic Acids Res. 13, 1777-1799. https://doi.org/10.1093/nar/13.5.1777
  34. Leung, K.M., van Horck, F.P.G., Lin, A.C., Allison, R., Standart, N., and Holt, C.E. (2006). Asymmetrical beta-actin mRNA translation in growth cones mediates attractive turning to netrin-1. Nat. Neurosci. 9, 1247-1256. https://doi.org/10.1038/nn1775
  35. Li, C., Bassell, G., and Sasaki, Y. (2010). Fragile X mental retardation protein is involved in protein synthesis-dependent collapse of growth cones induced by Semaphorin-3A. J. Pharmacol. Sci. 112, 241p-241p.
  36. Lionnet, T., Czaplinski, K., Darzacq, X., Shav-Tal, Y., Wells, A.L., Chao, J.A., Park, H.Y., de Turris, V., Lopez-Jones, M., and Singer, R.H. (2011). A transgenic mouse for in vivo detection of endogenous labeled mRNA. Nat. Methods 8, 165-U196. https://doi.org/10.1038/nmeth.1551
  37. Ma, B., Savas, J.N., Yu, M.S., Culver, B.P., Chao, M.V., and Tanese, N. (2011). Huntingtin mediates dendritic transport of beta-actin mRNA in rat neurons. Sci. Rep. 1, 140. https://doi.org/10.1038/srep00140
  38. Moon, H.C., Lee, B.H., Lim, K., Son, J.S., Song, M.S., and Park, H.Y. (2016). Tracking single mRNA molecules in live cells. J. Phys. D Appl. Phys. 49.
  39. Morisaki, T., Lyon, K., DeLuca, K.F., DeLuca, J.G., English, B.P., Zhang, Z.J., Lavis, L.D., Grimm, J.B., Viswanathan, S., Looger, L.L., et al. (2016). Real-time quantification of single RNA translation dynamics in living cells. Science 352, 1425-1429. https://doi.org/10.1126/science.aaf0899
  40. Nalavadi, V.C., Griffin, L.E., Picard-Fraser, P., Swanson, A.M., Takumi, T., and Bassell, G.J. (2012). Regulation of zipcode binding protein 1 transport dynamics in axons by myosin Va. J. Neurosci. 32, 15133-15141. https://doi.org/10.1523/JNEUROSCI.2006-12.2012
  41. Nelles, D.A., Fang, M.Y., O'Connell, M.R., Xu, J.L., Markmiller, S.J., Doudna, J.A., and Yeo, G.W. (2016). Programmable RNA tracking in live cells with CRISPR/Cas9. Cell 165, 488-496. https://doi.org/10.1016/j.cell.2016.02.054
  42. Park, H.Y., Buxbaum, A.R., and Singer, R.H. (2010). Single mRNA tracking in live cells. Methods Enzymol. 472, 387-406. https://doi.org/10.1016/S0076-6879(10)72003-6
  43. Park, H.Y., Lim, H., Yoon, Y.J., Follenzi, A., Nwokafor, C., Lopez- Jones, M., Meng, X.H., and Singer, R.H. (2014). Visualization of dynamics of single endogenous mRNA labeled in live mouse. Science 343, 422-424. https://doi.org/10.1126/science.1239200
  44. Pichon, X., Bastide, A., Safieddine, A., Chouaib, R., Samacoits, A., Basyuk, E., Peter, M., Mueller, F., and Bertrand, E. (2016). Visualization of single endogenous polysomes reveals the dynamics of translation in live human cells. J. Cell Biol. 214, 769-781. https://doi.org/10.1083/jcb.201605024
  45. Raj, A., van den Bogaard, P., Rifkin, S.A., van Oudenaarden, A., and Tyagi, S. (2008). Imaging individual mRNA molecules using multiple singly labeled probes. Nat. Methods 5, 877-879. https://doi.org/10.1038/nmeth.1253
  46. Rook, M.S., Lu, M., and Kosik, K.S. (2000). CaMKIIalpha 3' untranslated region-directed mRNA translocation in living neurons: visualization by GFP linkage. J. Neurosci. 20, 6385-6393. https://doi.org/10.1523/JNEUROSCI.20-17-06385.2000
  47. Sanz, E., Yang, L., Su, T., Morris, D.R., McKnight, G.S., and Amieux, P.S. (2009). Cell-type-specific isolation of ribosomeassociated mRNA from complex tissues. Proc. Natl. Acad. Sci. USA 106, 13939-13944. https://doi.org/10.1073/pnas.0907143106
  48. Schwanhausser, B., Gossen, M., Dittmar, G., and Selbach, M. (2009). Global analysis of cellular protein translation by pulsed SILAC. Proteomics 9, 205-209. https://doi.org/10.1002/pmic.200800275
  49. Spillane, M., Ketschek, A., Merianda, T.T., Twiss, J.L., and Gallo, G. (2013). Mitochondria coordinate sites of axon branching through localized intra-axonal protein synthesis. Cell Rep. 5, 1564-1575. https://doi.org/10.1016/j.celrep.2013.11.022
  50. Spille, J.H., and Kubitscheck, U. (2015). Labelling and imaging of single endogenous messenger RNA particles in vivo. J. Cell Sci. 128, 3695-3706. https://doi.org/10.1242/jcs.166728
  51. Steward, O., and Levy, W.B. (1982). Preferential localization of polyribosomes under the base of dendritic spines in granule cells of the dentate gyrus. J. Neurosci. 2, 284-291. https://doi.org/10.1523/JNEUROSCI.02-03-00284.1982
  52. Tanenbaum, M.E., Gilbert, L.A., Qi, L.S., Weissman, J.S., and Vale, R.D. (2014). A protein-Tagging system for signal amplification in gene expression and fluorescence imaging. Cell 159, 635-646. https://doi.org/10.1016/j.cell.2014.09.039
  53. Taylor, A.M., Blurton-Jones, M., Rhee, S.W., Cribbs, D.H., Cotman, C.W., and Jeon, N.L. (2005). A microfluidic culture platform for CNS axonal injury, regeneration and transport. Nat. Methods 2, 599-605. https://doi.org/10.1038/nmeth777
  54. Taylor, A.M., Berchtold, N.C., Perreau, V.M., Tu, C.H., Jeon, N.L., and Cotman, C.W. (2009). Axonal mRNA in uninjured and regenerating cortical mammalian axons. J. Neurosci. 29, 4697-4707. https://doi.org/10.1523/JNEUROSCI.6130-08.2009
  55. Tennyson, V.M. (1970). The fine structure of the axon and growth cone of the dorsal root neuroblast of the rabbit embryo. J. Cell Biol. 44, 62-79. https://doi.org/10.1083/jcb.44.1.62
  56. Tubing, F., Vendra, G., Mikl, M., Macchi, P., Thomas, S., and Kiebler, M.A. (2010). Dendritically localized transcripts are sorted into distinct ribonucleoprotein particles that display fast directional motility along dendrites of hippocampal neurons. J. Neurosci. 30, 4160-4170. https://doi.org/10.1523/JNEUROSCI.3537-09.2010
  57. Viswanathan, S., Williams, M.E., Bloss, E.B., Stasevich, T.J., Speer, C.M., Nern, A., Pfeiffer, B.D., Hooks, B.M., Li, W.P., English, B.P., et al. (2015). High-performance probes for light and electron microscopy. Nat. Methods 12, 568-576. https://doi.org/10.1038/nmeth.3365
  58. Wang, C., Han, B.R., Zhou, R.B., and Zhuang, X.W. (2016). Realtime imaging of translation on single mRNA transcripts in live cells. Cell 165, 990-1001. https://doi.org/10.1016/j.cell.2016.04.040
  59. Wu, B., Eliscovich, C., Yoon, Y.J., and Singer, R.H. (2016). Translation dynamics of single mRNAs in live cells and neurons. Science 352, 1430-1435. https://doi.org/10.1126/science.aaf1084
  60. Xing, L., and Bassell, G.J. (2013). mRNA localization: an orchestration of assembly, traffic and synthesis. Traffic 14, 2-14. https://doi.org/10.1111/tra.12004
  61. Yan, X.W., Hoek, T.A., Vale, R.D., and Tanenbaum, M.E. (2016). Dynamics of translation of single mRNA molecules in vivo. Cell 165, 976-989. https://doi.org/10.1016/j.cell.2016.04.034
  62. Yao, J.Q., Sasaki, Y., Wen, Z.X., Bassell, G.J., and Zheng, J.Q. (2006). An essential role for beta-actin mRNA localization and translation in $Ca^{2+}$-dependent growth cone guidance. Nat. Neurosci. 9, 1265-1273. https://doi.org/10.1038/nn1773
  63. Yoon, Y.J., Wu, B., Buxbaum, A.R., Das, S., Tsai, A., English, B.P., Grimm, J.B., Lavis, L.D., and Singer, R.H. (2016). Glutamateinduced RNA localization and translation in neurons. Proc. Natl. Acad. Sci. USA 113, E6877-E6886. https://doi.org/10.1073/pnas.1614267113
  64. Yoshimura, A., Fujii, R., Watanabe, Y., Okabe, S., Fukui, K., and Takumi, T. (2006). Myosin-Va facilitates the accumulation of mRNA/protein complex in dendritic spines. Curr. Biol. 16, 2345-2351. https://doi.org/10.1016/j.cub.2006.10.024
  65. Zelena, J. (1970). Ribosome-like particles in myelinated axons of the rat. Brain Res. 24, 359-363. https://doi.org/10.1016/0006-8993(70)90120-4
  66. Zhang, X.H., and Poo, M.M. (2002). Localized synaptic potentiation by BDNF requires local protein synthesis in the developing axon. Neuron 36, 675-688. https://doi.org/10.1016/S0896-6273(02)01023-1
  67. Zhang, H.L., Eom, T., Oleynikov, Y., Shenoy, S.M., Liebelt, D.A., Dictenberg, J.B., Singer, R.H., and Bassell, G.J. (2001). Neurotrophin-induced transport of a beta-actin mRNP complex increases beta-actin levels and stimulates growth cone motility. Neuron 31, 261-275. https://doi.org/10.1016/S0896-6273(01)00357-9

Cited by

  1. Making the Message Clear: Concepts for mRNA Imaging vol.3, pp.7, 2017, https://doi.org/10.1021/acscentsci.7b00251
  2. Sorting mRNA Molecules for Cytoplasmic Transport and Localization vol.9, pp.1664-8021, 2018, https://doi.org/10.3389/fgene.2018.00510
  3. Bioinformatic Analysis of the Sciatic Nerve Transcriptomes of Mice after 30-Day Spaceflight on Board the Bion-M1 Biosatellite vol.55, pp.3, 2016, https://doi.org/10.1134/s1022795419030104
  4. Visualisation of ribosomes in Drosophila axons using Ribo-BiFC vol.8, pp.12, 2016, https://doi.org/10.1242/bio.047233
  5. Chemo‐enzymatic treatment of RNA to facilitate analyses vol.11, pp.1, 2016, https://doi.org/10.1002/wrna.1561
  6. Mechanisms and consequences of subcellular RNA localization across diverse cell types vol.21, pp.6, 2020, https://doi.org/10.1111/tra.12730
  7. mRNA Trafficking in the Nervous System: A Key Mechanism of the Involvement of Activity-Regulated Cytoskeleton-Associated Protein (Arc) in Synaptic Plasticity vol.2021, pp.None, 2016, https://doi.org/10.1155/2021/3468795