• Title/Summary/Keyword: MS2-GFP

Search Result 8, Processing Time 0.024 seconds

MS2 Labeling of Endogenous Beta-Actin mRNA Does Not Result in Stabilization of Degradation Intermediates

  • Kim, Songhee H.;Vieira, Melissa;Kim, Hye-Jin;Kesawat, Mahipal Singh;Park, Hye Yoon
    • Molecules and Cells
    • /
    • v.42 no.4
    • /
    • pp.356-362
    • /
    • 2019
  • The binding of MS2 bacteriophage coat protein (MCP) to MS2 binding site (MBS) RNA stem-loop sequences has been widely used to label mRNA for live-cell imaging at single-molecule resolution. However, concerns have been raised recently from studies with budding yeast showing aberrant mRNA metabolism following the MS2-GFP labeling. To investigate the degradation pattern of MS2-GFP-labeled mRNA in mammalian cells and tissues, we used Northern blot analysis of ${\beta}$-actin mRNA extracted from the Actb-MBS knock-in and $MBS{\times}MCP$ hybrid mouse models. In the immortalized mouse embryonic cell lines and various organ tissues derived from the mouse models, we found no noticeable accumulation of decay products of ${\beta}$-actin mRNA compared with the wild-type mice. Our results suggest that accumulation of MBS RNA decay fragments does not always happen depending on the mRNA species and the model organisms used.

Expression of the Green Fluorescent Protein (GFP) in Tobacco Containing Low Nicotine for the Development of Edible Vaccine

  • Kim Young-Sook;Kim Mi-Young;Kang Tae-Jin;Kwon Tae-Ho;Jang Yong-Suk;Yang Moon-Sik
    • Journal of Plant Biotechnology
    • /
    • v.7 no.2
    • /
    • pp.97-103
    • /
    • 2005
  • This study was carried out to obtain basic information for gene manipulation in potent edible tobacco (Nicotiana tabacum cv. TI 516). N. tabacum cv. TI 516 is a plant for a possible candidate to use as an edible vaccine, since it contains a low level of nicotine. The effective plant regeneration system through leaf disc culture was achieved using a MS basal medium supplemented with 0.1 mg $1^{-1}$ NAA and 0.5 mg $1^{-1}$ BA. In order to transform the N. tabacum cv. TI 516 with the green fluorescent protein (GFP) gene, Agrobacterium tumefaciens LBA 4404 containing the GFP gene was used. Genomic PCR confirmed the integration of the GFP gene into nuclear genome of transgenic plants. Expression of the GFP gene was identified in callus, apical meristem and root tissue of transgenic N. tabacum cv. TI 516 plants using fluorescence microscopy. Western blot analysis revealed the expression of GFP protein in the transgenic edible tobacco plants. The amount of GFP protein detected in the transgenic tobacco plants was approximately 0.16% of the total soluble plant protein (TSP), which was determined by ELISA.

Efficient shoot regeneration using cotyledon explants and Agrobacterium tumefaciens - mediated transformation of bottle gourd (Lagenaria sicraria Standl.) (박 자엽조직을 이용한 효율적인 식물체 분화와 Agrobacterium에 의한 형질전환)

  • Kim, Soo-Yun;Ahn, Yul-Kyun;Huh, Yun-Chan;Lee, Hye-Eun;Kim, Do-Sun
    • Journal of Plant Biotechnology
    • /
    • v.41 no.3
    • /
    • pp.140-145
    • /
    • 2014
  • This study were carried out for selection of proper transformation variety and development of efficient regeneration and transformation methods. The number of shoot in commercial varieties of gourd plant were 0 ~ 7.3. and fusarium wilt resistant pure lines were 2.0 ~ 6.5 per dish containing on MS medium supplemented with 3 mg/L BA. The shoot regeneration frequency of fusarium wilt resistant pure lines were wide variation on the deviation. The expression of GFP was high 67% and 100% at the co-cultivation with Agrobacterium. The effective shoot regeneration plant hormone were combination BA and 2,4-D. The number and elongation condition of shoot was good after 4 weeks change with MS medium supplemented with 1 mg/L BA. Effective callus production plant hormone were combination of 3 mg/L BA and 0.1 mg/L 2.4-D.

Transformation of Bottle Gourd Rootstock (Lagenaria siceraria Standl.) using GFP gene (GFP유전자를 이용한 대목용 박 형질전환)

  • Lim, Mi-Young;Park, Sang-Mi;Kwon, Jung-Hee;Han, Sang-Lyul;Shin, Yoon-Sup;Han, Jeung-Sul;Harn, Chee-Hark
    • Journal of Plant Biotechnology
    • /
    • v.33 no.1
    • /
    • pp.33-37
    • /
    • 2006
  • Bottle gourd (Lagenaria siceraria Standl.) has been used as a rootstock for the watermelon cultivation because of better growth ability at low temperature and avoidance from contamination of the soil disease. Since the genetic source for the elite rootstock is limited in nature, the genetic engineering method is inevitable to develop new lines especially to obtain the functionally important or multi-disease resistant bottle gourd. Recently, our lab has set up a successful system to transform the bottle gourd. in order to monitor the transformation process, GFP gene is used. Cotyledons of the inbred line 9005, 9006 and G5 were used to induce the shoot under the selection media with MS + 30 g/L sucrose + 3.0 mg/L BAP + 100 mg/L kanamycin + 500 mg/L cefotaxime + 0.5 mg/L $AgNO_3$, pH 5.8. The shoot was developed from the cut side of the explants after 3 weeks on the selection media. The shoot was incubated in the rooting media with 1/2 MS + 30 g/L sucrose + 0.1 mg/L IAA + 50 mg/L kanamycin + 500 mg/L cefotaxime, pH 5.8 and moved to pot for acclimation. Although the shoot development rate was depended on the genotype, the G5 was the best line to be transformed. Monitoring GFP expression from the young shoot under microscope could make the selection much easier to distinguish the transformed shoot from the non-transformed shoots.

Construction of a Transgenic Plant to Develop a New Method for the Isolation of Calmodulin-Binding Proteins (새로운 방법을 이용한 칼모둘린 결합 단백질 분리를 위한 형질 전환 식물체의 구축)

  • Kim, Sun-Ho;Lee, Kyung-Hee;Kim, Kyung-Eun;Jung, Mi-Soon;Lim, Chae-Oh;Lee, Shin-Woo;Chung, Woo-Sik
    • Journal of Life Science
    • /
    • v.17 no.9 s.89
    • /
    • pp.1177-1181
    • /
    • 2007
  • Calmodulin (CaM), a ubiquitous calcium-binding protein, regulates diverse cellular functions by modulating the activity of a variety CaM-binding proteins (CaMBPs). Because eukaryotes have multiple CaMBPs, it is important to isolate and characterize them in different tissues and conditions. So far a number of CaMBPs have been identified through classical screening methods. Many classes of proteins have been predicted to bind CaMs based on their structural homology with already known targets. In an effort to develop a method for large-scale analysis of CaMBPs in Arabidopsis, we have generated a transgenic plants overexpressing AtCaM2-GFP. We performed protein pull-down assay to test whether exogenously expressed AtCaM2-GFP proteins can interact with CaMBPs. The exogenously expressed AtCaM2-GFP could strongly interact with a CaMBP, AS1 protein. This result suggests that AtCaM2-GFP in transgenic plants may interact with many CaMBPs in plant cell. Therefore, we will be able to isolate kinds of CaMBPs by using these transgenic plants in many different tissue and environments.

Goal-formation Process in Fractal Manufacturing Systems

  • Ryu Kwangyeol;Jung Mooyoung
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2003.05a
    • /
    • pp.800-807
    • /
    • 2003
  • Decomposition of tasks in the ordinary manufacturing systems is usually based on the predefined goal of the system. To achieve the high-level-goals (e.g., factory goal or company goal), several sub-goals should be achieved in advance. However, goals can change along with the current status of the system and the external environmental situations. Thus, a manufacturing system should support the goal-formations which can be bearable these changes for efficient and effective operations. Therefore, it IS necessary to develop a systematic methodology for the goal-formations in a manufacturing system. Especially, the formation and/or change of goals in real-time should be possible for distributed and dynamic systems including the fractal manufacturing system (FrMS). In this paper, a threefold methodology is proposed for the goal-formation process (GFP) in the FrMS; 1) a goal­generating process (GGP) to make and propagate fuzzy goals, 2) a goal-harmonizing process (GHP) to eliminate or reduce conflicts and interferences of goals by using a mobile agent- based negotiation scheme, and 3) a goal-balancing process (GBP) to make a compromise between goals by using quantifiable indicators of the manufacturing system.

  • PDF

Imaging Single-mRNA Localization and Translation in Live Neurons

  • Lee, Byung Hun;Bae, Seong-Woo;Shim, Jaeyoun Jay;Park, Sung Young;Park, Hye Yoon
    • Molecules and Cells
    • /
    • v.39 no.12
    • /
    • pp.841-846
    • /
    • 2016
  • Local protein synthesis mediates precise spatio-temporal regulation of gene expression for neuronal functions such as long-term plasticity, axon guidance and regeneration. To reveal the underlying mechanisms of local translation, it is crucial to understand mRNA transport, localization and translation in live neurons. Among various techniques for mRNA analysis, fluorescence microscopy has been widely used as the most direct method to study localization of mRNA. Live-cell imaging of single RNA molecules is particularly advantageous to dissect the highly heterogeneous and dynamic nature of messenger ribonucleoprotein (mRNP) complexes in neurons. Here, we review recent advances in the study of mRNA localization and translation in live neurons using novel techniques for single-RNA imaging.

Differentially Expressed Proteins in ER+ MCF7 and ER- MDA-MB-231 Human Breast Cancer Cells by RhoGDI-α Silencing and Overexpression

  • Hooshmand, Somayeh;Ghaderi, Abbas;Yusoff, Khatijah;Thilakavathy, Karuppiah;Rosli, Rozita;Mojtahedi, Zahra
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.7
    • /
    • pp.3311-3317
    • /
    • 2014
  • Background: The consequence of Rho GDP dissociation inhibitor alpha (RhoGDI${\alpha}$) activity on migration and invasion of estrogen receptor positive ($ER^+$) and negative ($ER^-$) breast cancer cells has not been studied using the proteomic approach. Changes in expression of RhoGDI${\alpha}$ and other proteins interacting directly or indirectly with RhoGDI${\alpha}$ in MCF7 and MDA-MB-231, with different metastatic potentials is of particular interest. Materials and Methods: $ER^+$ MCF7 and ER- MDA-MB-231 cell lines were subjected to two-dimensional electrophoresis (2-DE) and spots of interest were identified by matrix-assisted laser desorption/ionization time of- flight/time-of-flight (MALDI-TOF/TOF) mass spectrometry (MS) analysis after downregulation of RhoGDI${\alpha}$ using short interfering RNA (siRNA) and upregulated using GFP-tagged ORF clone of RhoGDI${\alpha}$. Results: The results showed a total of 35 proteins that were either up- or down-regulated in these cells. Here we identifed 9 and 15 proteins differentially expressed with silencing of RhoGDI${\alpha}$ in MCF-7 and the MDA-MB-231 cells, respectively. In addition, 10 proteins were differentially expressed in the upregulation of RhoGDI${\alpha}$ in MCF7, while only one protein was identified in the upregulation of RhoGDI${\alpha}$ in MDA-MB-231. Based on the biological functions of these proteins, the results revealed that proteins involved in cell migration are more strongly altered with RhoGDI-${\alpha}$ activity. Although several of these proteins have been previously indicated in tumorigenesis and invasiveness of breast cancer cells, some ohave not been previously reported to be involved in breast cancer migration. Hence, these proteins may serve as useful candidate biomarkers for tumorigenesis and invasiveness of breast cancer cells. Conclusions: Future studies are needed to determine the mechanisms by which these proteins regulate cell migration. The combination of RhoGDI${\alpha}$ with other potential biomarkers may be a more promising approach in the inhibition of breast cancer cell migration.