DOI QR코드

DOI QR Code

THE FRACTAL DIMENSION OF THE 𝜌 OPHIUCUS MOLECULAR CLOUD COMPLEX

  • Lee, Yongung (Korea Astronomy and Space Science Institute) ;
  • Li, Di (National Astronomical Observatories, Department of Radio Astronomy) ;
  • Kim, Y.S. (Korea Astronomy and Space Science Institute) ;
  • Jung, J.H. (Korea Astronomy and Space Science Institute) ;
  • Kang, H.W. (Korea Astronomy and Space Science Institute) ;
  • Lee, C.H. (Korea Astronomy and Space Science Institute) ;
  • Yim, I.S. (Korea Astronomy and Space Science Institute) ;
  • Kim, H.G. (Korea Astronomy and Space Science Institute)
  • 투고 : 2016.11.10
  • 심사 : 2016.12.06
  • 발행 : 2016.12.31

초록

We estimate the fractal dimension of the ${\rho}$ Ophiuchus Molecular Cloud Complex, associated with star forming regions. We selected a cube (${\upsilon}$, l, b) database, obtained with J = 1-0 transition lines of $^{12}CO$ and $^{13}CO$ at a resolution of 22" using a multibeam receiver system on the 14-m telescope of the Five College Radio Astronomy Observatory. Using a code developed within IRAF, we identified slice-clouds with two threshold temperatures to estimate the fractal dimension. With threshold temperatures of 2.25 K ($3{\sigma}$) and 3.75 K ($5{\sigma}$), the fractal dimension of the target cloud is estimated to be D = 1.52-1.54, where $P{\propto}A^{D/2}$, which is larger than previous results. We suggest that the sampling rate (spatial resolution) of observed data must be an important parameter when estimating the fractal dimension, and that narrower or wider dispersion around an arbitrary fit line and the intercepts at NP = 100 should be checked whether they relate to firms noise level or characteristic structure of the target cloud. This issue could be investigated by analysing several high resolution databases with different quality (low or moderate sensitivity).

키워드

참고문헌

  1. Bontemps, S., Andr, P., Kaas, A. A., Nordh, L., Olofsson, G., Huldtgren, M., Abergel, A., Blommaert, J., Boulanger, F., Burgdorf, M., et al. 2001, ISOCAM Observations of the Rho Ophiuchi Cloud: Luminosity and Mass Functions of the Pre-Main Sequence Embedded Cluster, A&A, 372, 173 https://doi.org/10.1051/0004-6361:20010474
  2. de Vega, H. J., Sanchez, N., & Combes, F. 1996, Self-Gravity as an Explanation of the Fractal Structure of the Interstellar Medium Nature, 383, 56 https://doi.org/10.1038/383056a0
  3. Elmegreen, B., & Scalo, J. 2004, Interstellar Turbulence I: Observations and Processes, ARA&A, 42, 211 https://doi.org/10.1146/annurev.astro.41.011802.094859
  4. Falgarone, E., Phillips, T. G., & Walker, C. K., 1991, The Edges of Molecular Clouds - Fractal Boundaries and Density Structure, ApJ, 378, 186 https://doi.org/10.1086/170419
  5. Hetem, A. Jr., & Lepine, J. R. D., 1993, Fractal 3-D Simulations of Molecular Clouds, A&A, 270, 451 https://doi.org/10.1001/jama.1993.03510040055022
  6. Isobe, T., Feigelson, E. D., Akritas, M. G., & Babu, G. J. 1990, Linear Regression in Astronomy, ApJ, 364, 104 https://doi.org/10.1086/169390
  7. Lee, Y. 2004, Fractal Dimensions of Interstellar Medium: I. The Molecular Clouds in the Antigalactic Center, JKAS, 32, 1
  8. Lee, Y., Kang, M., Kim, B. K., et al. 2008, Fractal Dimensions of Interstellar Medium: II. The Molecular Clouds Associated with the Hii Region Sh156, JKAS, 41, 157
  9. Loren, R. B. 1989, The Cobwebs of Ophiuchus. II - Filament Kinematics, ApJ, 338, 925 https://doi.org/10.1086/167245
  10. Mamajek, E. E. 2008, On the Distance to the Ophiuchus Star-Forming Region, AN, 329, 10
  11. Mandelbrot, B. B. 1983, The Fractal Geometry of Nature (San Francisco: Freeman)
  12. Sanchez, N., Alfaro, E. J., & Perez, E. 2005, The Fractal Dimension of Projected Clouds, ApJ, 625, 849 https://doi.org/10.1086/429553
  13. Sanchez, N., Alfaro, E. J., & Prez, E, 2007, Fractal Dimension of Interstellar Clouds: Opacity and Noise Effects, ApJ, 656, 222 https://doi.org/10.1086/510351
  14. Scalo, J. 1990, in: Physical Processes in Fragmentation and Star Formation, ed. R. Capuzzo-Docetta, C. Chiosi & A. Di Fazio (Dordrecht: Kluwer), 151
  15. Walch, S.,Wnsch, R., Burkert, A., Glover, S., &Whitworth, A. 2011, The Turbulent Fragmentation of the Interstellar Medium: The Impact of Metallicity on Global Star Formation, ApJ, 733, 47. https://doi.org/10.1088/0004-637X/733/1/47
  16. Williams, J. P., Blitz, L., & McKee, C. F., 2000, The Structure and Evolution of Molecular Clouds: from Clumps to Cores to the IMF, in: Protostars and Planets IV, ed. Mannings, V., Boss, A. P., Russell, S. S., (Tucson: University of Arizona Press), 97.

피인용 문헌

  1. Analytical Core Mass Function (CMF) from Filaments: Under Which Circumstances Can Filament Fragmentation Reproduce the CMF? vol.847, pp.2, 2017, https://doi.org/10.3847/1538-4357/aa898f
  2. The VMC Survey. XXVII. Young Stellar Structures in the LMC’s Bar Star-forming Complex vol.849, pp.2, 2017, https://doi.org/10.3847/1538-4357/aa911e
  3. The VMC Survey. XXIX. Turbulence-controlled Hierarchical Star Formation in the Small Magellanic Cloud vol.858, pp.1, 2018, https://doi.org/10.3847/1538-4357/aabc50