DOI QR코드

DOI QR Code

Crystallization Mechanism of Lithium Dislicate Glass with Various Particle Sizes

Lithium disilicate 유리의 입자크기에 따른 결정화 기구

  • Choi, Hyun Woo (Department of Nano Fusion Technology, Pusan National University) ;
  • Yoon, Hae Won (Department of Nano Fusion Technology, Pusan National University) ;
  • Yang, Yong Suk (Department of Nano Fusion Technology, Pusan National University) ;
  • Yoon, Su Jong (Department of Nano Fusion Technology, Pusan National University)
  • 최현우 (부산대학교 나노융합기술학과) ;
  • 윤혜원 (부산대학교 나노융합기술학과) ;
  • 양용석 (부산대학교 나노융합기술학과) ;
  • 윤수종 (부산대학교 나노융합기술학과)
  • Received : 2015.12.14
  • Accepted : 2015.12.28
  • Published : 2016.01.27

Abstract

We have investigated the crystallization mechanism of the lithium disilicate ($Li_2O-2SiO_2$, LSO) glass particles with different sizes by isothermal and non-isothermal processes. The LSO glass was fabricated by rapid quenching of melt. X-ray diffraction and differential scanning calorimetry measurements were performed. Different crystallization models of Johnson-Mehl-Avrami, modified Ozawa and Arrhenius were adopted to analyze the thermal measurements. The activation energy E and the Avrami exponent n, which describe a crystallization mechanism, were obtained for three different glass particle sizes. Values of E and n for the glass particle with size under $45{\mu}m$, $75{\sim}106{\mu}m$, and $125{\sim}150{\mu}m$, were 2.28 eV, 2.21 eV, 2.19 eV, and ~1.5 for the isothermal process, respectively. Those values for the non-isothermal process were 2.4 eV, 2.3 eV, 2.2 eV, and ~1.3, for the isothermal process, respectively. The obtained values of the crystallization parameters indicate that the crystallization occurs through the decreasing nucleation rate with a diffusion controlled growth, irrespective to the particle sizes. It is also concluded that the smaller glass particles require the higher heat absorption to be crystallized.

Keywords

References

  1. T. Kawamoto and S. Abe, Phys. Rev. B, 68, 235112 (2003). https://doi.org/10.1103/PhysRevB.68.235112
  2. G. Sarre, P. Blanchard and M. Broussely, J. Power Sources, 127, 65 (2004). https://doi.org/10.1016/j.jpowsour.2003.09.008
  3. T. Fuss, C. S. Ray, N. Kitamura, M. Makihara, and D. E. Day, J. Non-Cryst. Solids, 318, 157 (2003). https://doi.org/10.1016/S0022-3093(02)01878-1
  4. H. W. Yoon, C. H. Song, Y. S. Yang and S. J. Yoon, Korean J. Mater. Res., 22, 61 (2012). https://doi.org/10.3740/MRSK.2012.22.2.61
  5. P. Hautojarvi, A. Vehanen, V. Komppa and E. Pajanne, J. Non-Cryst. Solids, 29, 365 (1978). https://doi.org/10.1016/0022-3093(78)90157-6
  6. H. R. Fernandes, D. U. Tulyaganov, I. K. Goel and M. F. Ferreira, J. Am. Ceram. Soc., 91, 11 (2008).
  7. S. Furusawa, T. Kasahara and A. Kamiyama, Solid State Ionics, 180, 649 (2009). https://doi.org/10.1016/j.ssi.2008.12.031
  8. J. Du and L. R. Corrales, J. Chem. Phys., 125, 114702 (2006). https://doi.org/10.1063/1.2345060
  9. I. Gutzow, B. Durschang and C. Russel, J. Mater. Sci. 32, 5389 (1997). https://doi.org/10.1023/A:1018683331603
  10. S. Buchner, P. Soares, A. S. Pereira, E. B. Ferreira, and N. M. Balzaretti, J. Non-Cryst. Solids, 356, 3004 (2010). https://doi.org/10.1016/j.jnoncrysol.2010.02.027
  11. N. Mizouchi and A. Cooper Jr., J. Am. Ceram. Soc., 56, 320 (1973). https://doi.org/10.1111/j.1151-2916.1973.tb12504.x
  12. X. J. Xu, C. S. Ray, and D. E. Day, J. Am. Ceram. Soc., 74, 909 (1991). https://doi.org/10.1111/j.1151-2916.1991.tb04321.x
  13. T. Fuss, C. S. Ray, N. Kitamura, M. Makihara and D. E. Day, J. Non-Cryst. Solids, 318, 157 (2003). https://doi.org/10.1016/S0022-3093(02)01878-1
  14. M. Avrami, J. Chem. Phys., 9, 177 (1941). https://doi.org/10.1063/1.1750872
  15. H. E. Kissinger, J. Res. Nat. Bur. Stand., 57, 217 (1956). https://doi.org/10.6028/jres.057.026
  16. D. W. Henderson, J. Non-Cryst. Solids, 30, 301 (1979). https://doi.org/10.1016/0022-3093(79)90169-8
  17. K. Matusita, T. Komatsu and R. Yokota, J. Mat. Sci., 19, 291 (1984). https://doi.org/10.1007/BF02403137
  18. H. W. Choi, Y. H. Kim, Y. H. Rim and Y. S. Yang, Phys. Chem. Chem. Phys., 15, 9940 (2013). https://doi.org/10.1039/c3cp50909e
  19. J. W. Christian, The theory of transformations in metals and alloys, 2nd Part 1 (Pergamon Press, NY, 1975).
  20. S. J. Kim, J. E. Kim, Y. H. Rim and Y. S. Yang, Solid State Commun., 131, 129 (2004). https://doi.org/10.1016/j.ssc.2004.04.033
  21. H. W. Choi and Y. S. Yang, J. Them. Anal. Calorim., 119, 2171 (2015). https://doi.org/10.1007/s10973-015-4391-9
  22. S. J. Kim, J. E. Kim, H. W. Choi, Y. H. Rim and Y. S. Yang, Mat. Sci. Eng. B, 113, 149 (2004). https://doi.org/10.1016/S0921-5107(04)00400-3
  23. H. W. Choi, Y. H. Rim and Y. S. Yang, J. Korean Phys. Soc., 63, 2376 (2013). https://doi.org/10.3938/jkps.63.2376