DOI QR코드

DOI QR Code

Accuracy Analysis of HEC-RAS for Unsteady Flow Simulation considering the Flow Pattern Variations over the Side-weir of Side-Weir Detention Basin

강변저류지 횡월류부의 흐름 형태 변화를 고려한 HEC-RAS의 하도 내 부정류 모의 정확도 분석

  • Kim, Sanghyuk (Dept. of Civil & Environmental Eng, Myongji University) ;
  • Yoon, Byungman (Dept. of Civil & Environmental Eng, Myongji University) ;
  • Kim, Dongsu (Dept. of Civil & Environmental Eng, Dankook University) ;
  • Kim, Seojun (Dept. of Civil & Environmental Eng, Dankook University)
  • 김상혁 (명지대학교 토목환경공학과) ;
  • 윤병만 (명지대학교 토목환경공학과) ;
  • 김동수 (단국대학교 토목환경공학과) ;
  • 김서준 (단국대학교 토목환경공학과)
  • Received : 2015.09.23
  • Accepted : 2015.11.16
  • Published : 2016.01.31

Abstract

Accurate quantitative assessment of flood control effect of side-weir detention basin as a flood countermeasure was highly required, in which one-dimensional HEC-RAS model has been widely utilized in practice. When the submerged overflow occurred particularly driven by limited storage capacity of a given detention basin, HEC-RAS model could not be sufficiently applicable by guaranteeing acceptable accuracy without reliable benchmark dataset. From this perspective, a dedicated unsteady experiment was planned and carried out to physically realize such submerged overflow for accommodating better accuracy. Subsequently, the experimental results were applied to validate and calibrate HEC-RAS unsteady modeling to provide flood control effect of the detention basin for various inflow scenarios. After following this procedure, the modelled results indicated that there appeared within -5% of difference in stage height and maximum 2.4% accuracy to assess the flood control effect, thereby ensuring the calibrated HEC-RAS unsteady model to be accurate with practically acceptable error range.

강변저류지를 홍수방어대책에 포함시키기 위해서는 정확한 홍수조절효과 산정이 필요하며, 이를 위해 현재 실무에서는 1차원 부정류 수치모형인 HEC-RAS를 사용하고 있다. 그러나 강변저류지의 저류용량이 부족한 경우에 발생하는 잠긴 횡월류 흐름에 대해서는 HEC-RAS 부정류 수치모의의 정확도 분석이 수행되지 않았다. 따라서 본 연구에서는 직선수로에 강변저류지를 설치한 경우에 대하여 횡월류부의 다양한 흐름 형태를 재현할 수 있는 부정류 수리실험을 수행하였다. 또한 부정류 수리실험 결과를 이용하여 HEC-RAS 모형의 부정류 수치모의 결과의 정확도를 분석하여 하도 내 수위 오차 및 강변저류지의 홍수조절효과 산정 오차를 제시하였다. 분석 결과 횡월류부에서 잠긴 횡월류 흐름이 발생하는 경우에 대한 HEC-RAS의 수위 계산 결과는 최대 -5% 오차를 보였으며, 홍수조절효과 오차는 최대 2.4%로 나타나 HEC-RAS의 부정류 모의 결과가 비교적 정확한 것을 확인하였다.

Keywords

References

  1. Ahn, T. J., Kang, I. W., Kim, B. C., and Baek, C. W. (2008). "Development of Decision Making Model for Optimal Location of Washland." 2008 Proceedings of the Korea Water Resources Association Conference, KWRA, pp. 1409-1413. (in Korean)
  2. Baek, C. W., Byeon, C. I., Kim, D. H., and Ahn, T. J. (2010). "Study on a Scheme to Increase Flood Reduction Effect of Washlands." Journal of the Korean Society of Hazard Mitigation, Vol. 10, No. 2, pp. 123-133. (in Korean)
  3. Baek, C. W., Kim, B. C., and Ahn, T. J. (2009). "Analysis of Flood Reduction Effect of Washlands based on Variation of Rollway Characteristic." Journal of the Korean Society of Hazard Mitigation, Vol. 9, No. 1, pp. 145-150. (in Korean)
  4. Bradley, J. N. (1978). Hydraulics of bridge waterways. Hydraulic Design Series No. 1, Federal Highway Administration, 2nd Ed., Washington, D.C., U.S.
  5. Brunner, G. W. (2010). HEC-RAS, River Analysis System Hydraulic Reference Manual. CPD-69, January, Version 4.1. US Army Corps of Engineers Hydrologic Engineering Center.
  6. Chow, V. T. (1973) Open channel hydraulics. McGraw-Hill.
  7. Fukuoka, S., Kon, T., and Okamura, S. (2007). "Assesment of flood control effects of the Tsurumigawa river multi-purpose retarding basin." Doboku Gakkai Ronbunshuu B, Vol. 63, No. 3, pp. 238-248. https://doi.org/10.2208/jscejb.63.238
  8. Ji, U., Kim, S., Yoon, B., Kim, S. (2013). Analytical and Experimental Investigation of a Side-Weir Detention Basin in Flood-Level Reduction in the Main Channel, Journal of irrigation and drainage engineering, ASCE, Vol. 139, No. 8, pp. 663-671. https://doi.org/10.1061/(ASCE)IR.1943-4774.0000610
  9. Jun, K. S., Kim, J. S., Kim, W., and Yoon, B. M. (2010). "Computaional model for flow in river systems including storage pockets with side weirs." Journal of Korea Water Resources Association, KWRA, Vol. 43, No. 2, pp. 139-151. (in Korean) https://doi.org/10.3741/JKWRA.2010.43.2.139
  10. Kim, H. J., Bae, D. W., and Yoon, K. S. (2011). "Experimental Study for Anlaysis of Flood Mitigation Effect by Detention Basin." Journal of the Korean Society of Hazard Mitigation, Vol. 11, No. 6, pp. 281-291. (in Korean) https://doi.org/10.9798/KOSHAM.2011.11.6.281
  11. Kim, S. J., Hong, S. J., Yoon, B. M., and Ji, U. (2012a). "Feasibility Analysis of HEC-RAS for Unsteady Flow Simulation in the Open Channel with a Side-Weir Detention Basin." Journal of Korea Water Resources Association, KWRA, Vol. 45, No. 5, pp. 495-503. (in Korean) https://doi.org/10.3741/JKWRA.2012.45.5.495
  12. Kim, S. J., Kim, S. H., and Yoon, B. M., and Ji, U. (2012b). "Development and Accuracy Analysis of the Discharge-Supply System to Generate Hydrographs for Unsteady Flow in the Open Channel." Journal of Korea Water Resources Association, KWRA, Vol. 45, No. 8, pp. 783-794. (in Korean) https://doi.org/10.3741/JKWRA.2012.45.8.783
  13. Kindvaster, C. E. (1964). Discharge characteristics of embankmentshaped weirs. Water supply paper 1617-A. Washington, D.C, U.S Geological Survey.
  14. Lee, K. L., and Holley, E. R. (2002). Physical modeling for side-channel weirs. CRWR Online Report 02-2, houston, TX, USA.