DOI QR코드

DOI QR Code

The Evaluation of TOPLATS Land Surface Model Application for Forecasting Flash Flood in mountainous areas

산지돌발홍수 예측을 위한 TOPLATS 지표해석모델 적용성 평가

  • 이병주 (한국외국어대학교 차세대도시농림융합기상사업단) ;
  • 최수민 (한국외국어대학교 차세대도시농림융합기상사업단) ;
  • 윤성심 (한국외국어대학교 차세대도시농림융합기상사업단) ;
  • 최영진 (한국외국어대학교 차세대도시농림융합기상사업단)
  • Received : 2015.10.08
  • Accepted : 2015.11.06
  • Published : 2016.01.31

Abstract

The objective of this study is the generation of the gridded flash flood index using the gridded hydrologic components of TOPLATS land surface model and statistic flash flood index model. The accuracy of this method is also examined in this study. The study area is the national capital region of Korea, and 38 flash flood damages had occurred from 2009 to 2012. The spatio-temporal resolutions of land surface model are 1 h and 1 km, respectively. The gridded meteorological data are generated using the inverse distance weight method with automatic weather stations (AWSs) of Korea Meteorological Administration (KMA). The hydrological components (e.g., surface runoff, soil water contents, and water table depth) of cells corresponding to the positions of 38 flood damages reasonably respond to the cell based hourly rainfalls. Under the total rainfall condition, the gridded flash flood index shows 71% to 87% from 4 h to 6 h in the lead time based on the rescue request time and 42% to 52% of accuracy at 0 h which means that the time period of the lead time is in a limited rescue request time. From these results, it is known that the gridded flash flood index using the cell based hydrological components from land surface model and the statistic flash flood index model have a capability to predict flash flood in the mountainous area.

본 연구의 목적은 TOPLATS 지표해석모형으로부터 생산된 격자 수문기상성분과 통계적 돌발홍수지수모형을 이용하여 격자 돌발홍수지수를 생산하고 그 적용성을 평가하는데 있다. 대상유역은 2009~2012년동안 38건의 돌발홍수 구조요청 사례가 발생한 수도권 지역을 선정하였다. 지표해석모형의 시공간 해상도는 1 h, 1 km 이며 동일한 해상도의 모의를 위해 필요한 격자 기상자료는 기상청 AWS (automatic weather stations)의 시단위 자료를 역거리법을 이용하여 구축하였다. 돌발홍수 피해사례 38건에 대해 대응되는 모의격자의 수문성분을 분석하였으며 27건(71%)에서 구조요청시점에 대해 강우량, 지표유출량, 토양수분량, 지하수면깊이가 적절하게 모의되는 것을 확인하였다. 강우조건에 따른 격자 돌발홍수지수의 정확도는 구조요청시점 기준 선행시간 4~6시간까지 71~87%, 구조요청시점으로 한정된 0시간에서 42~52%로 나타났다. 이상의 결과로부터 지표해석모델을 이용한 격자 수문성분과 통계적 돌발홍수지수모형으로부터 산정된 격자 돌발홍수지수는 산지 돌발홍수를 예측하는데 활용될 수 있을 것으로 판단된다.

Keywords

References

  1. Bae, D.H., and Kim, J.H. (2007). "Development of Korea flash flood guidance system: (I) theory and system design." Journal of the Korean Society of Civil Engineers, Vol. 27, No. 3B, pp. 237-243.
  2. Bae, D.H., Jung, I.W., and Chang, H. (2008). "Long-term trend of precipitation and runoff in Korean river basins." Hydrological Processes, Vol. 22, pp. 2644-2656. https://doi.org/10.1002/hyp.6861
  3. Beven, K., Quinn, P., Romanowicz, R., Rreer, J., Fisher, J., and Lamb, R. (1994). TOPMODEL and GRIDDATB, A users guide to the distribution versions (94.03), CRES Technical Report TR110/94, Lancaster University, Lancaster, U.K.
  4. Carpenter, T.M., and Georgakakos, K.P. (1993). GIS based procedures in support of flash flood guidance, IHR Report, No. 366, Iowa Institute of Hydraulic Research The University of Iowa, Iowa City, pp. 1-27.
  5. Chang, H., and Kwon, W.T. (2007). "Spatial variations of summer precipitation trends in South Korea, 1973-2005." Environmental Research Letter, Vol. 2, pp. 1-9, DOI: 10.1088/ 1748-9326/2/4/045012.
  6. Famiglietti, J.S., and Wood, E.F. (1994). "Application of multiscale water and energy balance models on a tallgrass prairie." Water Resour. Res., Vol. 30, No. 11. pp. 3061-3078. https://doi.org/10.1029/94WR01498
  7. Ji, H.S., Lee, B.J., Nam, K.Y., Lee, C.K., and Jung, H.S. (2014). "Evaluation of hydrological components simulated by water and energy balance." Journal of Korea Water Resources Association, Vol. 47, No. 1, pp. 25-35. https://doi.org/10.3741/JKWRA.2014.47.1.25
  8. Jung, I.W., Bae, D.H., and Kim, G. (2011). "Recent trends of mean and extreme precipitation in Korea." Int. J. Climatol., Vol. 31, pp. 359-370. https://doi.org/10.1002/joc.2068
  9. Kim, B.S., and Kim, H.S. (2008). "Estimation of the flash flood severity using runoff hydrograph and flash flood index." Journal of Korea Water Resources Association, Vol. 41, No. 2, pp. 407-424.
  10. Lee, B.J., and Choi, Y.J. (2012). "Evaluation of high-resolution hydrologic components based on TOPLATS land surface model." Atmosphere, Korean Meteorological Society, Vol. 22, No. 3, pp. 357-365.
  11. Lee, S., and Kwon, W.T. (2004). "A variation of summer rainfall in Korea." Journal of Korean Geographical Society, Vol 39, pp. 819-832.
  12. Rodrigeuz-Iturbe, I., Sanabria, M.G., and Bras, R.L. (1982). "A geomophoclimatic theory of the instantaneous unit hydrograph." Water Resources Research, Vol. 18, No. 4, pp. 877-886. https://doi.org/10.1029/WR018i004p00877
  13. Shin, H.S., Kim, H.T., and Park, M.J. (2004). "The study of the fitness on calculation of the flood warning trigger rainfall using GIS and GCUH." Journal of Korea Water Resources Association, Vol. 37, No. 5, pp. 407-424. https://doi.org/10.3741/JKWRA.2004.37.5.407
  14. Sweeney, T.L. (1992). Modernized areal flash flood guidance, NOAA Technical Memorandum NWS HYDRO44.
  15. UCAR (2010). Flash Flood Early Warning System Reference Guide 2010, ISBN 978-0-615-37421-5.
  16. Yoon, S., Choi, S., Lee, B.J., and Choi, Y.J. (2015). "A study on statistical methods for the development of flash flood iIndex." Journal of the Korean Society of Hazard Mitigation, Proceeding.

Cited by

  1. Development of a precipitation–area curve for warning criteria of short-duration flash flood vol.18, pp.1, 2018, https://doi.org/10.5194/nhess-18-171-2018