과제정보
연구 과제 주관 기관 : National Science Foundation (NSF)
참고문헌
- Alexander, N.A. and Schilder, F. (2009), "Exploring the performance of a nonlinear tuned mass damper", J. Sound Vib., 319(1), 445-462. https://doi.org/10.1016/j.jsv.2008.05.018
- Aly, A.M. (2014a), "Vibration control of high-rise buildings for wind: a robust passive and active tuned mass damper", Smart Struct. Syst., 13(3), 473-500. https://doi.org/10.12989/sss.2014.13.3.473
- Aly, A.M. (2014b), "Proposed robust tuned mass damper for response mitigation in buildings exposed to multidirectional wind", Struct. Design Tall Spec. Build., 23(9), 664-691. https://doi.org/10.1002/tal.1068
- Aly, A.M. and Christenson, R.E. (2008), "On the evaluation of the efficacy of a smart damper: a new equivalent energy-based probabilistic approach", Smart Mater. Struct., 17(4), Article ID 045008, 11pp.
- Aly, A.M., Zasso, A. and Resta, F. (2011), "On the dynamics of a very slender building under winds: response reduction using MR dampers with lever mechanism", Struct. Des. Tall Spec. Build., 20(5), 539-551. https://doi.org/10.1002/tal.647
- Arapogianni, A. and Genach, A.B. (2013), Deep Water-the Next Step for Offshore Wind Energy, European Wind Energy Association (EWEA).
- Attaway, S. (2013), Matlab: A Practical Introduction to Programming and Problem Solving. Butterworth-Heinemann, Amsterdam, The Netherlands.
- Bianchi, F.D., De Battista, H. and Mantz, R.J. (2006), Wind Turbine Control Systems: Principles, Modelling and Gain Scheduling Design, Springer Science & Business Media, Germany.
- Bossanyi, E.A. (2003), "Individual blade pitch control for load reduction", Wind Energy, 6(2), 119-128. https://doi.org/10.1002/we.76
- Chakraborty, S. and Roy, B.K. (2011), "Reliability based optimum design of tuned mass damper in seismic vibration control of structures with bounded uncertain parameters", Probabilist. Eng. Mech., 26(2), 215-221. https://doi.org/10.1016/j.probengmech.2010.07.007
- Chang, C.C. and Qu, W.L. (1998), "Unified dynamic absorber design formulas for wind-induced vibration control of tall buildings", Struct. Des. Tall Spec. Build., 7(2), 147-166. https://doi.org/10.1002/(SICI)1099-1794(199806)7:2<147::AID-TAL107>3.0.CO;2-3
- Chang, C.C. (1999), "Mass dampers and their optimal designs for building vibration control", Eng. Structs., 21(5), 454-463. https://doi.org/10.1016/S0141-0296(97)00213-7
- Chen, H., Sun, Z. and Sun, L.M. (2011), "Active mass damper control for cable stayed bridge under construction: an experimental study", Struct. Eng. Mech., 38(2), 141-156. https://doi.org/10.12989/sem.2011.38.2.141
- Choi, S.B., Hong, S.R., Sung, K.G. and Sohn, J.W. (2008), "Optimal control of structural vibrations using a mixed-mode magnetorheological fluid mount", Mech. Sci., 50(3), 559-568. https://doi.org/10.1016/j.ijmecsci.2007.08.001
- Christenson, R.E. (2003), "Experimental verification of smart coupled building control", Proceedings of the 2003 Structures Congress, Seattle, WA, June.
- Colwell, S. and Basu, B. (2009), "Tuned liquid column dampers in offshore wind turbines for structural control", Eng. Struct., 31(2), 358-368. https://doi.org/10.1016/j.engstruct.2008.09.001
- Connor, J.J. and Connor, J.J. (2003), Introduction to Structural Motion Control, Prentice Hall Pearson Edu., Incorporated, Univ. of Michigan, Michigan, USA.
- Debbarma, R., Chakraborty, S. and Ghosh, S.K. (2010), "Optimum design of tuned liquid column dampers under stochastic earthquake load considering uncertain bounded system parameters", Int. J. Mech. Sci., 52(10), 1385-1393. https://doi.org/10.1016/j.ijmecsci.2010.07.004
- Den Hartog, J.P. (1934), Mechanical Vibrations, McGraw-Hill Book Company, The Maple Press Company, York, PA, USA.
- Dinh, V.N. and Basu, B. (2015), "Passive control of floating offshore wind turbine nacelle and spar vibrations by multiple tuned mass dampers", Struct. Control Health Monit., 22(1), 152-176. https://doi.org/10.1002/stc.1666
- Dinh, V.N., Basu, B. and Nielsen, S.R.K. (2013), "Impact of spar-nacelle-blade coupling on the edgewise response of floating offshore wind turbines", Coupled Syst. Mech., 2(3), 215-238. https://doi.org/10.12989/csm.2013.2.3.215
- Drachmann, A.G. (1961), "Heron's Windmill", Centaurus, 7, 145-151.
- Duenas-Osorio, L. and Basu, B. (2008), "Unavailability of wind turbines from wind induced accelerations", Eng. Struct., 30(4), 885-893. https://doi.org/10.1016/j.engstruct.2007.05.015
- Erkus, B. and Johnson, E.A. (2011), "Dissipativity analysis of the base isolated benchmark structure with magnetorheological fluid dampers", Smart Mater. Struct., 20, Article ID 105001.
- Faltinsen, O.M. (1993), Sea Loads on Ships and Offshore Structures, Cambridge Univ. Press, UK.
- Feng, M.Q. and Mita, A. (1995), "Vibration control of tall buildings using mega sub-configuration", Eng. Mech., 121(10), 1082-1088. https://doi.org/10.1061/(ASCE)0733-9399(1995)121:10(1082)
- Gur, S., Mishra, S.K., Bhowmick, S. and Chakraborty, S. (2014), "Compliant liquid column damper modified by shape memory alloy device for seismic vibration control", Smart Mater. Struct., 23(10), ID 105009, 14pp.
- Hansen, M.O.L. (2008), Aerodynamics of Wind Turbines, EarthScan, UK.
- Hitchcock, P.A., Kwok, K.C.S., Watkins, R.D. and Samali, B. (1997), "Characteristics of liquid column vibration absorbers (LCVA)-I", Eng. Struct., 19(2), 126-134. https://doi.org/10.1016/S0141-0296(96)00042-9
- Hitchcock, P.A., Kwok, K.C.S., Watkins, R.D. and Samali, B. (1997), "Characteristics of liquid column vibration absorbers (LCVA)-II", Eng. Struct., 19(2), 135-144. https://doi.org/10.1016/S0141-0296(96)00044-2
-
Huo, L., Shen, W., Li, H. and Zhang, Y. (2013), "Optimal Design of Liquid Dampers for Structural Vibration Control Based on GA and
$H_{\infty}$ Norm", Math. Problem. Eng., Article ID 191279. - Inaudi, J.A. (2000), "Performance of Variable-Damping Systems: Theoretical Analysis and Simulation", Proceedings of the3rd Int. Workshop on Struct. Control, Paris, France, July.
- Jonkman, J., Butterfield, S., Musial, W. and Scott, G. (2009), Definition of a 5-MW Reference Wind Turbine for Offshore System Development, National Renewable Energy Lab., Golden, Co, Technical Report, NREL/TP-500-38060, February.
- Kaimal, J.C., Wyngaard, J., Izumi, Y. and Cote, O.R. (1972), "Spectral characteristics of surface-layer turbulence", Q. J. Roy. Meteorol. Soc., 98(417), 563-589. https://doi.org/10.1002/qj.49709841707
- Karimirad, M. and Moan, T. (2012), "A simplified method for coupled analysis of floating offshore wind turbines", Marine Struct., 27(1), 45-63. https://doi.org/10.1016/j.marstruc.2012.03.003
- Kim, D.H., Ju, Y.K., Kim, M.H. and Kim, S.D. (2014), "Wind-induced vibration control of tall buildings using hybrid buckling-restrained braces", Struct. Des. Tall Spec. Build., 23(7), 549-562. https://doi.org/10.1002/tal.1066
- Lackner, M.A. and Rotea, M.A. (2011), "Structural control of floating wind turbines", Mechatronics, 21(4), 704-719. https://doi.org/10.1016/j.mechatronics.2010.11.007
- Laks, J.H., Pao, L.Y. and Wright, A.D. (2009), "Control of wind turbines: Past, present, and future", Proceedings of American Control Conference, St. Louis, USA, June.
- Lee, S.K., Lee, H.R. and Min, K.W. (2012), "Experimental verification on nonlinear dynamic characteristic of a tuned liquid column damper subjected to various excitation amplitudes", Struct. Des. Tall Spec. Build., 21(5), 374-388. https://doi.org/10.1002/tal.606
- Li, H.J., Hu, S.L.J. and Jakubiak, C. (2003), "Active vibration control for offshore platform subjected to wave loading", J. Sound Vib., 263(4), 709-724. https://doi.org/10.1016/S0022-460X(02)01095-7
- Lin, C.C., Lin, G.L. and Wang, J.F. (2010), "Protection of seismic structures using semi-active friction TMD", Earthq. Eng. Struct. D., 39(6), 635-659. https://doi.org/10.1002/eqe.961
- Lin, C.C., Lu, L.Y., Lin, G.L. and Yang, T.W. (2010), "Vibration control of seismic structures using semi-active friction multiple tuned mass dampers", Eng. Struct., 32(10), 3404-3417. https://doi.org/10.1016/j.engstruct.2010.07.014
- Lohrmann, D. (1995), "Von der ostlichen zur westlichen Windmuhle", Archiv fur Kulturgeschichte, 77(1), 1-32 (in German). https://doi.org/10.7788/akg.1995.77.1.1
- Lu, L.T., Chiang, W.L., Tang, J.P., Liu, M.Y. and Chen, C.W. (2003), "Active control for a benchmark building under wind excitations", J. Wind Eng. Ind. Aerod., 91(4), 469-493. https://doi.org/10.1016/S0167-6105(02)00431-2
- Mensah, A.F. and Duenas-Osorio, L. (2014), "Improved reliability of wind turbine towers with tuned liquid column dampers (TLCDs)", Struct. Saf., 47, 78-86. https://doi.org/10.1016/j.strusafe.2013.08.004
- Metwally, H., El-Souhily, B. and Aly, A. (2006), "Reducing vibration effects on buildings due to earthquake using magneto-rheological dampers", AEJ-Alexandria Engineering J., Elsevier, 45(2), 131-140.
- Min, K.W., Kim, J. and Lee, H.R. (2014a), "A design procedure of two-way liquid dampers for attenuation of wind-induced responses of tall buildings", J. Wind Eng. Ind. Aerod., 129, 22-30. https://doi.org/10.1016/j.jweia.2014.03.003
- Min, K.W., Kim, J. and Kim, Y.W. (2014b), "Design and test of tuned liquid mass dampers for attenuation of the wind responses of a full scale building", Smart Mater. Struct., 23(4), 045020. https://doi.org/10.1088/0964-1726/23/4/045020
- Mishra, S.K., Gur, S. and Chakraborty, S. (2013), "An improved tuned mass damper (SMA-TMD) assisted by a shape memory alloy spring", Smart Mater. Struct., 22(9), 1-16.
- Murtagh, P.J., Ghosh, A., Basu, B. and Broderick, B.M. (2008), "Passive control of wind turbine vibrations including blade/tower interaction and rotationally sampled turbulence", Wind Energy, 11(4), 305-317. https://doi.org/10.1002/we.249
- Musial, W., Butterfield, S. and Ram, B. (2006), "Energy from offshore wind", Proceedings of the Offshore Tech. Conference, Houston, USA, May.
- NOAA, (2015), National Oceanic and Atmospheric Administration, Official website, http://www.noaa.gov; page visited in March.
- Park, K.S. and Ok, S.Y. (2015), "Optimal design of hybrid control system for new and old neighboring buildings", J. Sound Vib., 336, 16-31. https://doi.org/10.1016/j.jsv.2014.09.044
- Pirner, M. and Urushadze, S. (2007), "Liquid damper for suppressing horizontal and vertical motions (parametric study)", J. Wind Eng. Ind. Aerod., 95. 1329-1349. https://doi.org/10.1016/j.jweia.2007.02.010
- Rezaee, M. and Aly, A.M. (2015), "Vibration control in wind turbines: A comparative study", Proceedings of the 14th International Conference on Wind Engineering-ICWE14, in Porto Alegre, Brazil, June 21-26.
- Ronold, K.O. and Larsen, G.C. (2000), "Reliability-based design of wind-turbine rotor blades against failure in ultimate loading", Eng. Struct., 22(6), 565-574. https://doi.org/10.1016/S0141-0296(99)00014-0
- Sakai, F., Takaeda, S. and Tamaki, T. (1989), "Tuned liquid column damper-new type device for suppression of building vibrations", Proceedings of the International Conference on High-rise Buildings, Nanjing, China, March.
- Sarpkaya, T. and Isaacson, M. (1981), Mechanics of Wave Forces on Offshore Structures, Reihhold van Nostrand Reinhold Co., New York, USA.
- Sebastian, T. and Lackner, M.A. (2012), "Development of a free vortex wake method code for offshore floating wind turbines", Renew. Energ., 46, 269-275. https://doi.org/10.1016/j.renene.2012.03.033
- Si, Y., Karimi, H.R. and Gao, H. (2014), "Modelling and optimization of a passive structural control design for a spar-type floating wind turbine", Eng. Struct., 69, 168-182. https://doi.org/10.1016/j.engstruct.2014.03.011
- Simiu, E. and Scanlan, R. (1996), Wind Effects on Structures, John Wiley & Sons, New York, USA.
- Smith, R.J. and Willford, M.R. (2007), "The damped outrigger concept for tall buildings", Struct. Des. Tall Spec. Build., 16(4), 501-517. https://doi.org/10.1002/tal.413
- Soong, T.T. and Chen, W.F. (1990), Active Structural Control: Theory and Practice, Longman Scientific & Technical, New York, USA.
- Stewart, G.M. and Lackner, M.A. (2014), "The impact of passive tuned mass dampers and wind-wave misalignment on offshore wind turbine loads", Eng. Struct., 73, 54-61. https://doi.org/10.1016/j.engstruct.2014.04.045
- Veers, P.S., Ashwill, T.D., Sutherland, H.J., Laird, D.L., Lobitz, D.W., Griffin, D.A. and Richmond, J.L. (2003), "Trends in the design, manufacture and evaluation of wind turbine blades", Wind Energy, 6(3), 245-259. https://doi.org/10.1002/we.90
- Wayman, E.N., Sclavounos, P.D., Butterfield, S., Jonkman, J. and Musial, W. (2006), "Coupled dynamic modeling of floating wind turbine systems", Proceedings of the Offshore Tech. Conference, Houston, USA, May.
- Weber, F. (2014), "Semi-active vibration absorber based on real-time controlled MR damper", Mech. Syst. Signal Pr., 46(2-3), 272-288. https://doi.org/10.1016/j.ymssp.2014.01.017
- Weber, F. and Maslanka, M. (2012), "Frequency and damping adaptation of a TMD with controlled MR damper", Smart Mater. Struct., 21(5), 055011. https://doi.org/10.1088/0964-1726/21/5/055011
- WWEA, (2015), World Wind Energy Association, http://www.wwindea.org/; page visited in March.
- Wu, J.C. and Pan, B.C. (2002), "Wind tunnel verification of actively controlled high-rise building in along-wind motion", J. Wind Eng. Ind. Aerod., 90(12-15), 1933-1950. https://doi.org/10.1016/S0167-6105(02)00299-4
피인용 문헌
- On the evaluation of wind loads for wind turbines' foundation design: Experimental and numerical investigations vol.26, pp.9, 2017, https://doi.org/10.1002/tal.1362
- Modeling and mitigation of excessive dynamic responses of wind turbines founded in warm permafrost vol.148, 2017, https://doi.org/10.1016/j.engstruct.2017.06.037
- Investigation of the Performance of Two Passive Controllers in Mitigating the Rotational Response of Irregular Buildings vol.2016, 2016, https://doi.org/10.1155/2016/1898792
- Vibration control in wind turbines to achieve desired system-level performance under single and multiple hazard loadings pp.15452255, 2018, https://doi.org/10.1002/stc.2261
- Development of energy based Neuro-Wavelet algorithm to suppress structural vibration vol.62, pp.2, 2016, https://doi.org/10.12989/sem.2017.62.2.237
- Self-control of high rise building L-shape in plan considering soil structure interaction vol.6, pp.3, 2016, https://doi.org/10.12989/csm.2017.6.3.229
- Analysis of a Benchmark Building Installed with Tuned Mass Dampers under Wind and Earthquake Loads vol.2019, pp.None, 2016, https://doi.org/10.1155/2019/7091819
- Towards a digital twin realization of the blade system design study wind turbine blade vol.28, pp.5, 2016, https://doi.org/10.12989/was.2019.28.5.271
- Proposed Theory of Semiactive Gains for Smart Dampers in MDOF Systems vol.145, pp.12, 2016, https://doi.org/10.1061/(asce)st.1943-541x.0002453
- Comparison of semi-active and passive tuned mass damper systems for vibration control of a wind turbine vol.30, pp.6, 2016, https://doi.org/10.12989/was.2020.30.6.663
- Parametric optimization of an inerter-based vibration absorber for wind-induced vibration mitigation of a tall building vol.31, pp.3, 2020, https://doi.org/10.12989/was.2020.31.3.241
- Flutter study of flapwise bend-twist coupled composite wind turbine blades vol.32, pp.3, 2021, https://doi.org/10.12989/was.2021.32.3.267
- A friction-based passive control technique to mitigate wind induced structural demand to wind turbines vol.232, pp.None, 2016, https://doi.org/10.1016/j.engstruct.2020.111744
- Vibration attenuation in wind turbines: A proposed robust pendulum pounding TMD vol.233, pp.None, 2016, https://doi.org/10.1016/j.engstruct.2021.111891
- Study on the damping mechanisms of a suspended particle damper attached to a wind turbine tower vol.33, pp.1, 2016, https://doi.org/10.12989/was.2021.33.1.103