• Title, Summary, Keyword: viscous dampers

Search Result 118, Processing Time 0.03 seconds

Seismic behavior of structural and non-structural elements in RC building with bypass viscous dampers

  • Esfandiyari, Reza;Nejad, Soheil Monajemi;Marnani, Jafar Asgari;Mousavi, Seyed Amin;Zahrai, Seyed Mehdi
    • Steel and Composite Structures
    • /
    • v.34 no.4
    • /
    • pp.487-497
    • /
    • 2020
  • During the last few decades, fluid viscous dampers have been significantly improved in terms of performance and reliability. Viscous dampers dissipate the input energy into heat and the increased temperature may damage internal seals of the damper. As a result, thermal compensation is crucial for almost all fluid viscous dampers. In this study, while referring to the main working principles of the recently developed bypass viscous damper in Iran, a comprehensive case study is conducted on a RC building having diagonal braces equipped with such viscous dampers. Experimental results of a small-scale bypass viscous damper is presented and it is shown that the currently available simplified Maxwell models can simulate behavior of the bypass viscous damper with good accuracy. Using a case study, contribution of bypass viscous dampers to seismic behavior of structural and non-structural elements are investigated. A designed procedure is adopted to increase damping ratio of the building from 3% to 15%. In this way, reductions of 25% and 13% in the required concrete and steel rebar materials have been achieved. From nonlinear time history analyses, it is observed that bypass viscous dampers can greatly improve seismic behavior of structural elements and non-structural elements.

Comparison of Motion Control Capacity of Viscous and Viscoelastic Dampers for Lateral Loads (횡하중에 대한 점성 및 점탄성감쇠기의 진동제어성능의 비교)

  • Kim, Jin-Koo;Kim, Yu-Kyung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.5 no.2
    • /
    • pp.155-162
    • /
    • 2001
  • In this study a structure with viscoelastic and viscous dampers with identical damping coefficient subjected to stationary seismic and wind load were analyzed in time and frequency-domain to compare motion control capability of viscous and viscoelastic dampers. The dampers were placed based on story drift and acceleration obtained from RMS responses. According to the analysis results, the motion control capability of viscous dampers turned out to be superior to that of the viscoelastic dampers for the case of seismic load. On the contrary, in case of wind load, the viscoelastic dampers were more effective in the mitigation of dynamic responses. However, it was also found that the differences were in a narrow margin.

  • PDF

A simplified design procedure for seismic retrofit of earthquake-damaged RC frames with viscous dampers

  • Weng, D.G.;Zhang, C.;Lu, X.L.;Zeng, S.;Zhang, S.M.
    • Structural Engineering and Mechanics
    • /
    • v.44 no.5
    • /
    • pp.611-631
    • /
    • 2012
  • The passive energy dissipation technology has been proven to be reliable and robust for recent practical applications. Various dampers or energy dissipation devices have been widely used in building structures for enhancing their performances during earthquakes, windstorm and other severe loading scenarios. This paper presents a simplified seismic design procedure for retrofitting earthquake-damaged frames with viscous dampers. With the scheme of designing the main frame and the supplemental viscous dampers respectively, the seismic analysis model of damped structure with viscous dampers and braces was studied. The specific analysis process was described and approach to parameter design of energy dissipation components was also proposed. The expected damping forces for damped frame were first obtained based on storey shear forces; and then they were optimized to meet different storey drift requirements. A retrofit project of a RC frame school building damaged in the 2008 Wenchuan earthquake was introduced as a case study. This building was retrofitted by using viscous dampers designed through the simplified design procedure proposed in this paper. Based on the case study, it is concluded that this simplified design procedure can be effectively used to make seismic retrofit design of earthquake-damaged RC frames with viscous dampers, so as to achieve structural performance objectives under different earthquake risk levels.

Damping Effects of Fluid Viscous Dampers on the Seismic Response of Bridges (교량의 지진응답거동에 작용하는 액체점성감쇠기의 감쇠효과 분석)

  • 정상모;안창모
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • /
    • pp.379-386
    • /
    • 2001
  • Fluid viscous dampers have been used as energy dissipators or STU's (Shock Transmission Unit) in earthquake resistant designs for bridges. Viscous dampers have many advantages compared to other friction type or visco-elastic type of dampers. They do neither increase internal pier forces due to their out of phase response, nor produce reaction forces at the low velocities associated with thermal movements. Therefore, they anable the super structure to restore itself perfectly after a severe movement dut to seismic excitations. This paper investigates the response of bridges designed with viscous dampers in regard to damping coefficients, properties of dampers, and arrangements of dampers. For this purpose, time-history dynamic analyses have been performed using a very simple model relevant to a typical bridge example. Based on the results, it presents some design duidelines on how to determine a proper damping ratio and on how to arrange dampers. In usual cases, damping coefficients corresponding to about 0.2-0.3 of damping ratios seem to be very effective in bridge designs.

  • PDF

Seismic analysis of 3-D two adjacent buildings connected by viscous dampers with effect of underneath different soil kinds

  • Farghaly, Ahmed Abdelraheem
    • Smart Structures and Systems
    • /
    • v.15 no.5
    • /
    • pp.1293-1309
    • /
    • 2015
  • 3D two adjacent buildings with different heights founded in different kinds of soil connected with viscous dampers groups, with especial arrangement in plane, were investigated. Soil structure interaction for three different kinds of soil (stiff, medium and soft) were modeled as 3D Winkler model to give the realistic behavior of adjacent buildings connected with viscous dampers under various earthquake excitations taking in the account the effect of different kinds of soil beneath the buildings, using SAP2000n to model the whole system. A range of soil properties and soil damping characteristics are chosen which gives broad picture of connected structures system behavior resulted from the influence soil-structure interaction. Its conclusion that the response of connected structures system founded on soft soil are more critical than those founded on stiff soil. The behavior of connected structures is different from those with fixed base bigger by nearly 20%, and the efficiency of viscous dampers connecting the two adjacent buildings is reduced by nearly 25% less than those founded on stiff soil.

Optimization of longitudinal viscous dampers for a freight railway cable-stayed bridge under braking forces

  • Yu, Chuanjin;Xiang, Huoyue;Li, Yongle;Pan, Maosheng
    • Smart Structures and Systems
    • /
    • v.21 no.5
    • /
    • pp.669-675
    • /
    • 2018
  • Under braking forces of a freight train, there are great longitudinal structural responses of a large freight railway cable-stayed bridge. To alleviate such adverse reactions, viscous dampers are required, whose parametric selection is one of important and arduous researches. Based on the longitudinal dynamics vehicle model, responses of a cable-stayed bridge are investigated under various cases. It shows that there is a notable effect of initial braking speeds and locations of a freight train on the structural responses. Under the most unfavorable braking condition, the parameter sensitivity analyses of viscous dampers are systematically performed. Meanwhile, a mixing method called BPNN-NSGA-II, combining the Back Propagation neural network (BPNN) and Non-Dominated Sorting Genetic Algorithm With Elitist Strategy (NSGA-II), is employed to optimize parameters of viscous dampers. The result shows that: 1. the relationships between the parameters of viscous dampers and the key longitudinal responses of the bridge are high nonlinear, which are completely different from each other; 2. the longitudinal displacement of the bridge main girder significantly decreases by the optimized viscous dampers.

Effectiveness of non-linear fluid viscous dampers in seismically isolated buildings

  • Guler, Elif;Alhan, Cenk
    • Earthquakes and Structures
    • /
    • v.17 no.2
    • /
    • pp.191-204
    • /
    • 2019
  • Near-field earthquake records including long-period high-amplitude velocity pulses can cause large isolation system displacements leading to buckling or rupture of isolators. In such cases, providing supplemental damping in the isolation system has been proposed as a solution. However, it is known that linear viscous dampers can reduce base displacements in case of near-field earthquakes but at the potential expense of increased superstructure response in case of far-field earthquakes. But can non-linear dampers with different levels of non-linearity offer a superior seismic performance? In order to answer this question, the effectiveness of non-linear viscous dampers in reducing isolator displacements and its effects on the superstructure response are investigated. A comparison with linear viscous dampers via time history analysis is done using a base-isolated benchmark building model under historical near-field and far-field earthquake records for a wide range of different levels of non-linearity and supplemental damping. The results show that the non-linearity level and the amount of supplemental damping play important roles in reducing base displacements effectively. Although use of non-linear supplemental dampers may cause superstructure response amplification in case of far-field earthquakes, this negative effect may be avoided or even reduced by using appropriate combinations of non-linearity level and supplemental damping.

Seismic design of a precast r.c. structure equipped with viscous dampers

  • Silvestri, Stefano;Gasparini, Giada;Trombetti, Tomaso
    • Earthquakes and Structures
    • /
    • v.2 no.3
    • /
    • pp.297-321
    • /
    • 2011
  • The seismic design of a two-storey precast reinforced-concrete building structure equipped with viscous dampers is presented in this paper with twofold purpose. The first goal is to verify the applicability of a practical procedure for the identification of the mechanical characteristics of the viscous dampers which allow to achieve target performance levels, originally proposed by the authors for moment-resisting building frames, also with reference to "pendular" structures. The second goal is to investigate the effectiveness of the use of viscous dampers (as compared with traditional lateral-resisting stiff braces) for the seismic design of precast not moment-resisting concrete structures.

Critical earthquake input energy to connected building structures using impulse input

  • Fukumoto, Yoshiyuki;Takewaki, Izuru
    • Earthquakes and Structures
    • /
    • v.9 no.6
    • /
    • pp.1133-1152
    • /
    • 2015
  • A frequency-domain method is developed for evaluating the earthquake input energy to two building structures connected by viscous dampers. It is shown that the earthquake input energies to respective building structures and viscous connecting dampers can be defined as works done by the boundary forces between the subsystems on their corresponding displacements. It is demonstrated that the proposed energy transfer function is very useful for clear understanding of dependence of energy consumption ratios in respective buildings and connecting viscous dampers on their properties. It can be shown that the area of the energy transfer function for the total system is constant regardless of natural period and damping ratio because the constant Fourier amplitude of the input acceleration, relating directly the area of the energy transfer function to the input energy, indicates the Dirac delta function and only an initial velocity (kinetic energy) is given in this case. Owing to the constant area property of the energy transfer functions, the total input energy to the overall system including both buildings and connecting viscous dampers is approximately constant regardless of the quantity of connecting viscous dampers. This property leads to an advantageous feature that, if the energy consumption in the connecting viscous dampers increases, the input energies to the buildings can be reduced drastically. For the worst case analysis, critical excitation problems with respect to the impulse interval for double impulse (simplification of pulse-type impulsive ground motion) and multiple impulses (simplification of long-duration ground motion) are considered and their solutions are provided.

Dynamic properties of a building with viscous dampers in non-proportional arrangement

  • Suarez, Luis E.;Gaviria, Carlos A.
    • Structural Engineering and Mechanics
    • /
    • v.55 no.6
    • /
    • pp.1241-1260
    • /
    • 2015
  • Any rational approach to define the configuration and size of viscous fluid dampers in a structure should be based on the dynamic properties of the system with the dampers. In this paper we propose an alternative representation of the complex eigenvalues of multi degree of freedom systems with dampers to calculate new equivalent natural frequencies. Analytical expressions for the dynamic properties of a two-story building model with a linear viscous damper in the first floor (i.e. with a non-proportional damping matrix) are derived. The formulas permit to obtain the equivalent damping ratios and equivalent natural frequencies for all the modes as a function of the mass, stiffness and damping coefficient for underdamped and overdamped systems. It is shown that the commonly used formula to define the equivalent natural frequency is not applicable for this type of system and for others where the damping matrix is not proportional to the mass matrix, stiffness matrix or both. Moreover, the new expressions for the equivalent natural frequencies expose a novel phenomenon; the use of viscous fluid dampers can modify the vibration frequencies of the structure. The significance of the new equivalent natural frequencies is expounded by means of a simulated free vibration test. The proposed approach may offer a new perspective to study the effect of viscous dampers on the dynamic properties of a structure.