참고문헌
- P. Aiena, Fredholm and Local Spectral Theory with Applications to Multipliers, Kluwer Academic Publishers, London, 2004.
- P. Aiena, E. Aponte, and E. Balzan, Weyl type theorems for left and right polaroid operators, Integral Equations Operator Theory 66 (2010), no. 1, 1-20. https://doi.org/10.1007/s00020-009-1738-2
- P. Aiena, M. Cho, and M. Gonzalez, Polaroid type operators under quasi-affinities, J. Math. Anal. Appl. 371 (2010), no. 2, 485-495. https://doi.org/10.1016/j.jmaa.2010.05.057
- S. K. Berberian, The Weyl spectrum of an operator, Indiana Univ. Math. J. 20 (1970), 529-544. https://doi.org/10.1512/iumj.1971.20.20044
- S. Brown, Hyponormal operators with thick spectra have invariant subspaces, Ann. of Math. 125 (1987), no. 1, 93-103. https://doi.org/10.2307/1971289
- X. H. Cao, Analytically class A operators and Weyl's theorem, J. Math. Anal. Appl. 320 (2006), no. 2, 795-803. https://doi.org/10.1016/j.jmaa.2005.07.056
- M. Cho and Y. M. Han, Riesz idempotent and algebraically M-hyponormal operators, Integral Equations Operator Theory 53 (2005), no. 3, 311-320. https://doi.org/10.1007/s00020-004-1314-8
- H. R. Dowsow, Spectral Theory of Linear Operators, Academic Press, London, 1973.
- N. Dunford, A survey of the theory of spectral operators, Bull. Amer. Math. Soc. 64 (1958), 217-274. https://doi.org/10.1090/S0002-9904-1958-10219-0
- J. Eschmeier, Invariant subspaces for subscalar operators, Arch. Math. (Basel) 52 (1989), no. 6, 562-570. https://doi.org/10.1007/BF01237569
- J. Eschmeier, K. B. Laursen, and M. M. Neumann, Multipliers with natural local spectra on commutative Banach algebras, J. Funct. Anal. 138 (1996), no. 2, 273-294. https://doi.org/10.1006/jfan.1996.0065
- J. Eschmeier and M. Putinar, Spectral Decompositions and Analytic Sheaves, London Mathematical Society Monographs, No. 10, Clarendon Press, Oxford, 1996.
-
J. K. Han, H. Y. Lee, and W. Y. Lee, Invertible completions of
$2{\times}2$ upper triangular operator matrices, Proc. Amer. Math. Soc. 128 (2000), no. 1, 119-123. https://doi.org/10.1090/S0002-9939-99-04965-5 - J. S. Han, S. H. Lee, and W. Y. Lee, On M-hyponormal weighted shifts, J. Math. Anal. Appl. 286 (2003), no. 1, 116-124. https://doi.org/10.1016/S0022-247X(03)00456-6
- R. E. Harte, Fredholm, Weyl and Browder theory, Proc. Roy. Irish Acad. 85A (1985), 151-176.
- R. E. Harte, Invertibility and Singularity for Bounded Linear Operators, Dekker, New York, 1988.
- J. C. Hou and X. L. Zhang, On the Weyl spectrum: Spectral mapping theorem and Weyl's theorem, J. Math. Anal. Appl. 220 (1998), no. 2, 760-768. https://doi.org/10.1006/jmaa.1997.5897
- K. B. Laursen and M. M. Neumann, Automatic continuity of intertwining linear operators on Banach spaces, Rend. Circ. Mat. Palermo 40 (1991), no. 2, 325-341. https://doi.org/10.1007/BF02845071
- K. B. Laursen, An Introduction to Local Spectral Theory, London Math. Soc. Monogr. (N.S) 20, Clarendon Press, Oxford, 2000.
- W. Y. Lee, Weyl spectra of operator matrices, Proc. Amer. Math. Soc. 129 (2001), no. 1, 131-138. https://doi.org/10.1090/S0002-9939-00-05846-9
- S. Mecheri, Bishop's property, SVEP and Dunford property (C), Electron. J. Linear Algra 23 (2012), 523-529.
- S. Mecheri, Bishop's property and Riesz idempotent for k-quas-paranormal operators, Banach J. Math. Anal. 6 (2012), no. 1, 147-154. https://doi.org/10.15352/bjma/1337014673
- S. Mecheri, Isolated points of spectrum of k-quasi--class A operators, Studia Math. 208 (2012), no. 1, 87-96. https://doi.org/10.4064/sm208-1-6
- S. Mecheri, On k-quasi-M-hyponormal operators, Math. Inequal. Appl. 16 (2013), no. 3, 895-902.
- K. K. Oberai, On the Weyl spectrum, Illinois J. Math. 18 (1974), 208-212.
- M. Oudghiri, Weyl's and Browder's theorems for operators satisfying the SVEP, Studia Math. 163 (2004), no. 1, 85-101. https://doi.org/10.4064/sm163-1-5
- M. Putinar, Hyponormal operators are subscalar, J. Operator Theory 12 (1984), no. 2, 385-395.
- M. Putinar, Hyponormal operators and eigendistribution, Advances in invariant subspaces and other results of operator theory (Timioara and Herculane, 1984), 249-273, Oper. Theory Adv. Appl., 17, Birkhuser, Basel, 1986.
-
M. Putinar, Quasisimilarity of tuples with Bishop's property (
$\beta$ ), Integral Equations Operator Theory 15 (1992), no. 6, 1047-1052. https://doi.org/10.1007/BF01203128