DOI QR코드

DOI QR Code

Exact mathematical solution for free vibration of thick laminated plates

  • 투고 : 2015.03.15
  • 심사 : 2015.11.16
  • 발행 : 2015.12.10

초록

In this paper, the modified form of shear deformation plate theories is proposed. First, the displacement field geometry of classical and the first order shear deformation theories are compared with each other. Using this comparison shows that there is a kinematic relation among independent variables of the first order shear deformation theory. So, the modified forms of rotation functions in shear deformation theories are proposed. Governing equations for rectangular and circular thick laminated plates, having been analyzed numerically so far, are solved by method of separation of variables. Natural frequencies and mode shapes of the plate are determined. The results of the present method are compared with those of previously published papers with good agreement obtained. Efficiency, simplicity and excellent results of this method are extensible to a wide range of similar problems. Accurate solution for governing equations of thick composite plates has been made possible for the first time.

키워드

참고문헌

  1. Basset, A.B. (1890), "On the extension and flexure of cylindrical and spherical thin elastic shells", Philos. Trans. R. Soc. London, B, Biol. Sci., 181, 433-480. https://doi.org/10.1098/rsta.1890.0007
  2. Bernoulli, J. (1789), "Essai theorique sur les vibrations de plaques elastiques rectangulaires et Libres", Nova Acta Acad, Petropolit, 5, 197-219.
  3. Chakraverty, S. (2009), Vibration of Plates, CRC Press, New York, US.
  4. Chen, W.Q. and Lue, C.F. (2005), "3D vibration analysis of cross-ply laminated plates with one pair of opposite edges simply supported", Compos. Struct., 69, 77-87. https://doi.org/10.1016/j.compstruct.2004.05.015
  5. Chladni, E.F.F. (1802), Die Akustik. Breitkopf & Hartel, Leipzig.
  6. Euler, L. (1766), "De motu vibratorio tympanorum", Novi Commentari Acad. Petropolit, 10, 243-260.
  7. Green, A.E. and Naghdi, P.M. (1981), "A theory of laminated composite plate and road", Report UCB/AM-81-3. University of California, Berkeley. California.
  8. Hencky, H. (1947), "Uber die berucksichtigung der schubverzerrung in ebenen platen", Ingeieur Archiv, 16 72-76. https://doi.org/10.1007/BF00534518
  9. Hildebrand, F.B. and Reissner, E. (1949), "Thomas GB. Notes on The Foundations of The Theory of Small Displacements of Orthotropic Shells", NASA Technical Note, No: 1833.
  10. Hosseini-Hashemi, S., Es'haghi, M., Rokni Damavandi Taher, H. and Fadaie, M. (2010), "Exact closed-form frequency equations for thick circular plates using a third-order shear deformation theory", J. Sound Vib., 329, 3382-3396. https://doi.org/10.1016/j.jsv.2010.02.024
  11. Kirchhoff, G. (1850), "Uber das gleichgwich und die bewegung einer elastischen scheibe", Journal Fur Die Reine und Angewandte Mathematik, 40, 51-88.
  12. Kirchhoff, G. (1876), Vorlesungen Uber Mathematische Physik, BG. Teubner. Leipzig.
  13. Lekhnitski, S.T. (1968), Anisotropic Plates, Gordon and Breach, New York, US.
  14. Liew, K.M., Han, J.B. and Xiao, Z.M. (1997), "Vibration analysis of circular Mindlin plates using the differential quadrature method", J. Sound Vib., 205(5), 617-630. https://doi.org/10.1006/jsvi.1997.1035
  15. Lo, K.H., Christensen, R.M. and Wu, E.M. (1977), "A high-order theory of plate deformation-Part 1: Homogeneous plates", J. Appl. Mech., 44, 663-668. https://doi.org/10.1115/1.3424154
  16. Lo, K.H., Christensen, R.M. and Wu, E.M. (1977), "A high-order theory of plate deformation-Part 2: Laminated plates", J. Appl. Mech., 44, 669-676. https://doi.org/10.1115/1.3424155
  17. Mbakogu, F.C. and Pavlovic, M.N. (1998), "Closed-form fundamental-frequency estimates for polar orthotropic circular plates", Appl. Acoust., 54, 207-228. https://doi.org/10.1016/S0003-682X(97)00094-7
  18. Mindlin, R.D. (1951), "Influence of rotary inertia and shear on flexural motion of isotropic elastic plates", J. Appl. Mech., ASME, 18, 31-38.
  19. Navvier, L.M.H. (1819), Resume des Lecons de M'echanique, Ecole Polytechnique, Paris, France.
  20. Nyfeh, A.H. and Frank Pai, P. (2004), Linear and Nonlinear Structural Mechanics, John wiley & Sons Inc, New Jersy, US.
  21. Omer, C. (2008), "Free vibration analysis of symmetrically laminated composite plates with first-order shear deformation theory (FSDT) by discrete singular convolution method", Finite Elem. Anal. Des., 44, 725-731. https://doi.org/10.1016/j.finel.2008.04.001
  22. Omer, C. (2009), "Fundamental frequency of isotropic and orthotropic rectangular plates with linearly varying thickness by discrete singular convolution method", Appl. Math. Model., 33(26), 3825-3835. https://doi.org/10.1016/j.apm.2008.12.019
  23. Pagano, N.J. (1970), "Exact solution for rectangular bidirectional composite and sandwich plates", J. Compos. Mater., 4, 20-34. https://doi.org/10.1177/002199837000400102
  24. Pagano, N.J. and Hatfield, S.J. (1972), "Elastic behavior of multilayer bidirectional composites", AIAA J., 10, 931-933. https://doi.org/10.2514/3.50249
  25. Qatu, M.S. (2004), Vibration of Laminated Shells and Plates, Elsevier. Oxford. UK.
  26. Rao, S.S. and Prasad, A.S. (1980), "Natural frequencies of Mindlin circular plates", J. Appl. Mech., 47, 652-655. https://doi.org/10.1115/1.3153748
  27. Reddy, J.N. (1984), "A simple higher order theory for laminated composite plates", J. Appl. Mech., 51, 745-752. https://doi.org/10.1115/1.3167719
  28. Reddy, J.N. (2004), Mechanics of Laminated Composite Plates and Shells: Theory and Analysis, 2nd Edition, CRC Press, Washington D.C, US.
  29. Reissner, E. (1944), "On the theory of bending of elastic plates", J. Math. Phys., 23, 184-191. https://doi.org/10.1002/sapm1944231184
  30. Seide, P. (1975), Small Elastic Deformation of Thin Shells, Noordhoff, Leyden, The Netherlands.
  31. Shimpi, R.P. (2002), "Refined plate theory and its variants", AIAA J., 40, 137-146. https://doi.org/10.2514/2.1622
  32. Shooshtari, A. and Razavi, S. (2010), "A closed form solution for linear and nonlinear free vibrations of composite and fiber metal laminated rectangular plates", Compos. Struct., 92, 2663-2675. https://doi.org/10.1016/j.compstruct.2010.04.001
  33. Srinivas, S., Rao, C.J. and Rao, A.K. (1970), "An exact analysis fpr vibration of simply-supported and laminated thick rectangular plates", J. Sound. Vib., 12, 187-199. https://doi.org/10.1016/0022-460X(70)90089-1
  34. Srinivas, S. and Rao, A.K. (1970), "Bending, vibration and buckling of simply-supported thick orthotropic rectangular plates and laminates", Int. J. Solid. Struct., 6, 1463-1481. https://doi.org/10.1016/0020-7683(70)90076-4
  35. Szilard, R. (2004), Theories and Applications of Plate Analysis: Classical, Numerical and Engineering Methods, John Wiley & Sons, Inc, New Jersy, US.
  36. Thai, H.T. and Choi, D.H. (2014), "Finite element formulation of a refined plate theory for laminated composite plates", J. Compos Mater., 48, 3521-3538. https://doi.org/10.1177/0021998313511353
  37. Vinson, J.R. and Sierakowski, R.L. (1986), The Behavior of Structures Composed of Composite Materials, Nijhoff, Boston, Massachusetts.
  38. Viswanathan, K.K., Kyung, K.S. and Jang, L.H. (2009), "Asymmetric free vibrations of laminated annular cross-ply circular plates including the effects of shear deformation and rotary inertia: spline method", Forschung im Ingenieurwesen, 73, 205-217. https://doi.org/10.1007/s10010-009-0106-3
  39. Viswanathan, K.K. and Lee, S.K. (2007), "Free vibration of laminated cross-ply plates including shear deformation by spline method", Int. J. Mech. Sci., 49, 352-363. https://doi.org/10.1016/j.ijmecsci.2006.08.016
  40. Washizu, K. (1975), Variational Method in Elasticity and Plasticity, 2nd Edition, PERGAMON Press.
  41. Whitney, J.M. (1987), Structural Analysis of Laminated Anisotripic Plates, Technomic, Lancaster, Pennsylvania.
  42. Yang, P.C., Norris, C.H. and Stavsky, Y. (1966), "Elastic wave propagation in heterogeneous plates", Int. J. Solid. Struct., 2, 665-684. https://doi.org/10.1016/0020-7683(66)90045-X
  43. Zenkour, A.M. (2004), "Analytical solution for bending cross-ply laminated plates under thermo-mechanical loading", Compos Struct., 65, 367-379. https://doi.org/10.1016/j.compstruct.2003.11.012
  44. Zenkour, A.M. (2009), "The refined sinusoidal theory for FGM plates on elastic foundations", Int. J. Mech. Sci., 51, 869-880. https://doi.org/10.1016/j.ijmecsci.2009.09.026

피인용 문헌

  1. A two-variable simplified nth-higher-order theory for free vibration behavior of laminated plates vol.182, 2017, https://doi.org/10.1016/j.compstruct.2017.09.041
  2. Eigenfrequencies of simply supported taper plates with cut-outs vol.63, pp.1, 2017, https://doi.org/10.12989/sem.2017.63.1.103
  3. Shear deformable super-convergent finite element for steel beams strengthened with glass-fiber reinforced polymer (GFRP) plate vol.46, pp.4, 2015, https://doi.org/10.1139/cjce-2018-0259