• 제목/요약/키워드: first order shear deformation

검색결과 445건 처리시간 0.021초

A Four-Variable First-Order Shear Deformation Theory Considering the Variation of In-plane Rotation of Functionally Graded Plates

  • Park, Minwo;Choi, Dong-Ho
    • 국제강구조저널
    • /
    • 제18권4호
    • /
    • pp.1265-1283
    • /
    • 2018
  • This paper presents a four-variable first-order shear deformation theory considering in-plane rotation of functionally graded plates. In recent studies, a simple first-order shear deformation theory was developed and extended to functionally graded plates. It has only four variables, separating the deflection into bending and shear parts, while the conventional first-order shear deformation theory has five variables. However, this simple first-order shear deformation theory only provides good predictions for simply supported plates since it does not consider in-plane rotation varying through the thickness of the plates. The present theory also has four variables, but considers the variation of in-plane rotation such that it is able to correctly predict the responses of the plates with any boundary conditions. Analytical solutions are obtained for rectangular plates with various boundary conditions. Comparative studies demonstrate the effects of in-plane rotation and the accuracy of the present theory in predicting the responses of functionally graded plates.

An analytical solution for free vibration of functionally graded beam using a simple first-order shear deformation theory

  • Larbi, Latifa Ould;Hadji, Lazreg;Meziane, Mohamed Ait Amar;Adda Bedia, E.A.
    • Wind and Structures
    • /
    • 제27권4호
    • /
    • pp.247-254
    • /
    • 2018
  • In this paper, a simple first-order shear deformation theory is presented for dynamic behavior of functionally graded beams. Unlike the existing first-order shear deformation theory, the present one contains only three unknowns and has strong similarities with the classical beam theory in many aspects such as equations of motion, boundary conditions, and stress resultant expressions. Equations of motion and boundary conditions are derived from Hamilton's principle. Analytical solutions of simply supported FG beam are obtained and the results are compared with Euler-Bernoulli beam and the other shear deformation beam theory results. Comparison studies show that this new first-order shear deformation theory can achieve the same accuracy of the existing first-order shear deformation theory.

개선된 일차전단변형이론을 이용한 지능구조평판의 거동해석 (The Analysis of Smart Plate Using Enhanced First Shear Deformation Theory)

  • 오진호;김흥수;이승윤;조맹효
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2007년도 정기 학술대회 논문집
    • /
    • pp.663-668
    • /
    • 2007
  • An enhanced first shear deformation theory for composite plate is developed. The detailed process is as follows. Firstly, the theory is formulated by modifying higher order zigzag theory. That is, the higher order theory is separated into the warping function representing the higher order terms and lower order terms. Secondly, the relationships between higher order zig-zag field and averaged first shear deformation field based on the Reissner-Mindlin's plate theory are derived. Lastly, the effective shear modulus is calculated by minimizing error between higher order energy and first order energy. Then the governing equation of FSDT is solved by substituting shear modulus into effective shear modulus. The recovery processing with the nodal unknown obtained from governing equation is performed. The accuracy of the present proposed theory is demonstrated through numerical examples. The proposed method will serve as a powerful tool in the prediction of laminated composite plate.

  • PDF

고차전단변형을 고려한 복합적층판 및 쉘구조의 좌굴해석 (Buckling Analysis of Laminated Composite Plate and Shell Structures considering a Higher-Order Shear Deformation)

  • 이원홍;윤석호;한성천
    • 한국강구조학회 논문집
    • /
    • 제9권1호통권30호
    • /
    • pp.3-11
    • /
    • 1997
  • Laminated composite shells exhibit properties comsiderably different from those of the single-layer shell. Thus, to obtain the more accurate solutions to laminated composite shells ptoblems, effects of shear strain should be condidered in analysis of them. A higher-order shear deformation theory requires no shear correction coefficients. This theory is used to determine the buckling loads of elastic shells. The theory accounts for parabolic distribution of the transverse shear through the thickness of the shell and rotary inertia. Exact solutions of simply-supported shells are obtained and the results are compared with the exact solutions of the first-order shear deformation theory, and the classical theory. The present theory predicts the buckling loads more accurately when compared to the first -order and classical theory.

  • PDF

복합적층구조해석을 위한 1차전단변형이론의 간단한 수정방안 (A Simple Modification of the First-order Shear Deformation Theory for the Analysis of Composite Laminated Structures)

  • 천경식;지효선
    • 한국강구조학회 논문집
    • /
    • 제23권4호
    • /
    • pp.475-481
    • /
    • 2011
  • 본 논문에서는 1차전단변형이론의 횡방향 전단응력과 전단변형률을 개선한 간단한 수정방법을 제시하였다. 고차전단변형이론, 층별이론과 같은 기존의 많은 제정된 방법들과 비교해서 본 방법은 매우 간단하게 $C^0$ 연속성만이 요구되는 유한요소에 적용할 수 있으며, 그 방정식 구성도 매우 간단하다. 본 방법의 기본 개념은 고차전단변형이론에 의한 수식으로 부터 두께방향에 따른 횡방향 전단응력과 전단변형률의 분포를 수정하는 것이다. 그러므로 1차전단변형이론처럼 전단보정계수는 더 이상 요구되지 않는다. 제안한 수식의 타당성을 검증하기 위하여 수치해석을 수행하였으며, 본 수정방법에 의한 해는 고차전단변형이론을 고려한 결과와 잘 일치하였다.

Thermal stability of functionally graded sandwich plates using a simple shear deformation theory

  • Bouderba, Bachir;Houari, Mohammed Sid Ahmed;Tounsi, Abdelouahed;Mahmoud, S.R.
    • Structural Engineering and Mechanics
    • /
    • 제58권3호
    • /
    • pp.397-422
    • /
    • 2016
  • In the present work, a simple first-order shear deformation theory is developed and validated for a variety of numerical examples of the thermal buckling response of functionally graded sandwich plates with various boundary conditions. Contrary to the conventional first-order shear deformation theory, the present first-order shear deformation theory involves only four unknowns and has strong similarities with the classical plate theory in many aspects such as governing equations of motion, and stress resultant expressions. Material properties and thermal expansion coefficient of the sandwich plate faces are assumed to be graded in the thickness direction according to a simple power-law distribution in terms of the volume fractions of the constituents. The core layer is still homogeneous and made of an isotropic material. The thermal loads are considered as uniform, linear and non-linear temperature rises within the thickness direction. The results reveal that the volume fraction index, loading type and functionally graded layers thickness have significant influence on the thermal buckling of functionally graded sandwich plates. Moreover, numerical results prove that the present simple first-order shear deformation theory can achieve the same accuracy of the existing conventional first-order shear deformation theory which has more number of unknowns.

Exact mathematical solution for free vibration of thick laminated plates

  • Dalir, Mohammad Asadi;Shooshtari, Alireza
    • Structural Engineering and Mechanics
    • /
    • 제56권5호
    • /
    • pp.835-854
    • /
    • 2015
  • In this paper, the modified form of shear deformation plate theories is proposed. First, the displacement field geometry of classical and the first order shear deformation theories are compared with each other. Using this comparison shows that there is a kinematic relation among independent variables of the first order shear deformation theory. So, the modified forms of rotation functions in shear deformation theories are proposed. Governing equations for rectangular and circular thick laminated plates, having been analyzed numerically so far, are solved by method of separation of variables. Natural frequencies and mode shapes of the plate are determined. The results of the present method are compared with those of previously published papers with good agreement obtained. Efficiency, simplicity and excellent results of this method are extensible to a wide range of similar problems. Accurate solution for governing equations of thick composite plates has been made possible for the first time.

A refined finite element for first-order plate and shell analysis

  • Han, Sung-Cheon;Kanok-Nukulchai, Worsak;Lee, Won-Hong
    • Structural Engineering and Mechanics
    • /
    • 제40권2호
    • /
    • pp.191-213
    • /
    • 2011
  • This paper presents an improved 8-node shell element for the analysis of plates and shells. The finite element, based on a refined first-order shear deformation theory, is further improved by the combined use of assumed natural strain method. We analyze the influence of the shell element with the different patterns of sampling points for interpolating different components of strains. Using the assumed natural strain method with proper interpolation functions, the present shell element generates neither membrane nor shear locking behavior even when full integration is used in the formulation. Further, a refined first-order shear deformation theory, which results in parabolic through-thickness distribution of the transverse shear strains from the formulation based on the third-order shear deformation theory, is proposed. This formulation eliminates the need for shear correction factors in the first-order theory. Numerical examples demonstrate that the present element perform better in comparison with other shell elements.

A new simple three-unknown sinusoidal shear deformation theory for functionally graded plates

  • Houari, Mohammed Sid Ahmed;Tounsi, Abdelouahed;Bessaim, Aicha;Mahmoud, S.R.
    • Steel and Composite Structures
    • /
    • 제22권2호
    • /
    • pp.257-276
    • /
    • 2016
  • In this paper, a new simple higher-order shear deformation theory for bending and free vibration analysis of functionally graded (FG) plates is developed. The significant feature of this formulation is that, in addition to including a sinusoidal variation of transverse shear strains through the thickness of the plate, it deals with only three unknowns as the classical plate theory (CPT), instead of five as in the well-known first shear deformation theory (FSDT) and higher-order shear deformation theory (HSDT). A shear correction factor is, therefore, not required. Equations of motion are derived from Hamilton's principle. Analytical solutions for the bending and free vibration analysis are obtained for simply supported plates. The accuracy of the present solutions is verified by comparing the obtained results with those predicted by classical theory, first-order shear deformation theory, and higher-order shear deformation theory. Verification studies show that the proposed theory is not only accurate and simple in solving the bending and free vibration behaviours of FG plates, but also comparable with the other higher-order shear deformation theories which contain more number of unknowns.

Flexure of cross-ply laminated plates using equivalent single layer trigonometric shear deformation theory

  • Sayyad, Atteshamuddin S.;Ghugal, Yuwaraj M.
    • Structural Engineering and Mechanics
    • /
    • 제51권5호
    • /
    • pp.867-891
    • /
    • 2014
  • An equivalent single layer trigonometric shear deformation theory taking into account transverse shear deformation effect as well as transverse normal strain effect is presented for static flexure of cross-ply laminated composite and sandwich plates. The inplane displacement field uses sinusoidal function in terms of thickness coordinate to include the transverse shear deformation effect. The cosine function in thickness coordinate is used in transverse displacement to include the effect of transverse normal strain. The kinematics of the present theory is much richer than those of the other higher order shear deformation theories, because if the trigonometric term (involving thickness coordinate z) is expanded in power series, the kinematics of higher order theories (which are usually obtained by power series in thickness coordinate z) are implicitly taken into account to good deal of extent. Governing equations and boundary conditions of the theory are obtained using the principle of virtual work. The closed-form solutions of simply supported cross-ply laminated composite and sandwich plates have been obtained. The results of present theory are compared with those of the classical plate theory (CPT), first order shear deformation theory (FSDT), higher order shear deformation theory (HSDT) of Reddy and exact three dimensional elasticity theory wherever applicable. The results predicted by present theory are in good agreement with those of higher order shear deformation theory and the elasticity theory.