DOI QR코드

DOI QR Code

Isothermal Conduction Calorimetry Analysis of Alkali Activated Slag Binder

알칼리 활성 슬래그 결합재의 미소수화열 분석

  • Choi, Young-Cheol (High-tech Construction Materials Center, Korea Conformity Laboratories) ;
  • Cho, Hyun-Woo (High-tech Construction Materials Center, Korea Conformity Laboratories) ;
  • Oh, Sung-Woo (High-tech Construction Materials Center, Korea Conformity Laboratories) ;
  • Moon, Gyu-Don (High-tech Construction Materials Center, Korea Conformity Laboratories)
  • 최영철 (한국건설생활환경시험연구원 첨단건설재료센터) ;
  • 조현우 (한국건설생활환경시험연구원 첨단건설재료센터) ;
  • 오성우 (한국건설생활환경시험연구원 첨단건설재료센터) ;
  • 문규돈 (한국건설생활환경시험연구원 첨단건설재료센터)
  • Received : 2015.09.18
  • Accepted : 2015.09.27
  • Published : 2015.09.30

Abstract

In this research, isothermal conduction calorimetry analysis has been conducted to investigate the reactivity of alkali activated slag binders. In order to secure the reactivity and workability of alkali activated slag binders, experiences with various types and concentrations of alkali activators were performed. Isothermal conduction calorimetry were measured with different alkali activators and mass ratio of $SO_3$ to binders as variables, and sodium tripolyphosphate ($Na_2P_3O_{10}$) and hydrated sodium borate ($Na_2B_4O_710H_2O$) were used to control setting time. As a results, alkali activated slag binders required alkali activators with 4 to 5 percent of concentration to accelerate the formation of calcium silicate hydrate(C-S-H) by alkali-activation, and overall heat generation rate delayed as accumulated heat decreased due to the high $SO_3$ contents. Moreover, the use of hydrated sodium borate as setting retarder causes elongated setting time due to delaying heat generation, so it can be considered that setting retarder played an important role in delaying total heat generation rate.

본 연구에서는 알칼리 활성화 슬래그 결합재의 반응성을 정량적으로 살펴보기 위해 미소수화열을 분석을 수행하였다. 알칼리 활성화 슬래그 결합재의 반응성 및 작업성 확보를 위해 다양한 알칼리 자극제의 종류 및 농도에 대해서 실험을 수행하였다. 알칼리 자극제 및 $SO_3$ 질량비를 변화하면서 미소수화열을 측정하였으며, 응결시간 제어를 위해 sodium tripolyphosphate ($Na_2P_3O_{10}$)와 hydrated sodium borate ($Na_2B_4O_710H_2O$)를 적용하였다. 그 결과, 알칼리 활성화 슬래그 결합재는 알칼리 활성에 의해 calcium silicate hydrate(C-S-H)를 촉진하는데 4~5% 농도의 알칼리가 필요한 것으로 나타났으며, $SO_3$ 함량이 높아질수록 누적 발열량이 작아지면서 전반적으로 발열이 지연되는 것으로 나타났다. 또한, 응결 지연제로서 hydrated sodium borate를 사용하였을 경우 발열을 억제하여 지연된 효과를 나타내며, 전체적인 누적 발열을 지연시키는 효과를 보이는 것을 확인할 수 있었다.

Keywords

References

  1. Cho, B.W., Park, M.S., Park, S.K. (2006). Strength Development and Hardening Mechanism of Alkali Activated Fly Ash Mortar, Korea Concrete Institute, 18(4), 449-458 [in Korean]. https://doi.org/10.4334/JKCI.2006.18.4.449
  2. Davidovits, J. (2008). Geopolymer Chemistry & Applications, Institute Geopolymere, Saint-Quentin, France.
  3. Jonathan, T., Kenneth J.D. (2010). Structure and Mechanical Properties of Aluminosilicate Geopolymer Composites With Portland Cement and its Constituent Minerals, Cement and Concrete Research, 40(5), 787-794. https://doi.org/10.1016/j.cemconres.2009.12.003
  4. Kang, H.J., Ryu, G.S., Koh, K.T., Kang, S.T., Park, J.J., Kim, S.W., Lee, J.H. (2009). Effect of the Combined Using of Fly Ash and Blast Furnace Slag as Cementitious Materials on Properties of Alkali-Activated Mortar, Korea Concrete Institute, 18(2), 39-50 [in Korean].
  5. Kang, S.T., Ryu, G.S., Koh, K.T., Lee, J.H. (2011). Optimum Mix Design of Alkali-Activated Cement Mortar Using Bottom Ash as Binder, Korea Concrete Institute, 23(4), 487-494 [in Korean]. https://doi.org/10.4334/JKCI.2011.23.4.487
  6. Lee, K.M., Kwon, K.H., Lee, H.K., Lee, S.H., Kim, G.Y. (2004). Characteristics of Autogenous Shrinkage for Concrete Containing Blast-Furnace Slag, Korea Concrete Institute, 16(5), 621-626 [in Korean]. https://doi.org/10.4334/JKCI.2004.16.5.621
  7. Lee, S.S., Song, H.Y., Lee, S.M. (2009). An Experimental Study on the Influence of High Fineness Fly Ash and Water-Binder Ratio on Properties of Concrete, Korea Concrete Institute, 20(1), 29-35 [in Korean].
  8. Nicholson, C.M., Murray, B.J., Fletcher, R.A., Brew, D.R.M., MacKenzie, K.J.D., Schmucker, M. (2005). Novel Geopolymer Materials Containing Borate Structural Units, Proc. World Geopolymer Conf. St. Quentin, Paris, 31-33.
  9. Palomo, A., Macias, A., Blanco, M.T., and Puertas, F. (1992). Physical, Chemical and Mechanical Characterisation of Geopolymers, In Proceedings of the 9th International Congress on the Chemistry of Cement, 505-511.
  10. Roy, D.M. (1999). Alkali-Activated Cements, Opportunities and Challanges, Cement and Concrete Research, 29(2), 249-254. https://doi.org/10.1016/S0008-8846(98)00093-3
  11. Shi, C., Krivenko, P.V., Roy, D. (2006). Alkali-Activated Cements and Concretes, New York, Taylor & Francis.
  12. Wang, W.C., Wang, H.Y., Lob, M.H. (2015). The Fresh and Engineering Properties of Alkali Activated Slag as a Function of Fly Ash Replacement and Alkali Concentration, Construction and Building Materials, 84, 224-229. https://doi.org/10.1016/j.conbuildmat.2014.09.059
  13. Yang, K.H., Song, J.G. (2007). The Properties and Applications of Alkali-Activated Concrete with No Cement, Korea Concrete Institute, 19(2), 42-48 [in Korean].