DOI QR코드

DOI QR Code

The effect of rotation on piezo-thermoelastic medium using different theories

  • Othman, Mohamed I.A. (Department of Mathematics, Faculty of Science, Zagazig University) ;
  • Ahmed, Ethar A.A. (Department of Mathematics, Faculty of Science, Zagazig University)
  • 투고 : 2015.05.11
  • 심사 : 2015.11.06
  • 발행 : 2015.11.25

초록

The present paper attempts to investigate the propagation of plane waves in generalized piezo-thermoelastic medium under the effect of rotation. The normal mode analysis is used to obtain the expressions for the displacement components, the temperature, the stress and the strain components. Comparisons are made with the results predicted by different theories (Coupled theory, Lord-Schulman, Green-Lindsay) in the absence and presence of rotation.

키워드

참고문헌

  1. Abd-alla, A.N. and Alsheikh, F.A. (2009), "Reflection and refraction of plane quasi-longitudinal waves at an interface of two piezoelectric media under initial stresses", Arch. Appl. Mech., 79, 843-857. https://doi.org/10.1007/s00419-008-0257-y
  2. Abd-alla, A.N., Alsheikh, F.A. and Al-Hossain, A.Y. (2012), "The reflection phenomena of quasi-vertical transverse waves in piezoelectric medium under initial stresses", Meccanica, 47, 731-744. https://doi.org/10.1007/s11012-011-9485-2
  3. Abd-Alla, A.E.N.N., Eshaq, H.A. and ElHaes, H. (2011), "The phenomena of reflection and transmission waves in smart nano materials", J. Comp. Theor. Nanosci., 8(9), 1670-1678. https://doi.org/10.1166/jctn.2011.1864
  4. Abd-alla, A.N., Hamdan, A.M., Giorgio, I. and Del Vescovo, D. (2014), "The mathematical model of reflection and reflection of longitudinal waves in thermo-piezoelectric materials", Arch. Appl. Mech., 84, 1229-1248. https://doi.org/10.1007/s00419-014-0852-z
  5. Biot, M.A. (1956), "Thermoelasticity and irreversible thermodynamics", J. Appl. Phys., 27, 240-253. https://doi.org/10.1063/1.1722351
  6. Chandrasekharaiah, D.S. (1988), "A generalized thermoelastic wave propagation in a semi-infinite piezoelectric rod", Acta Mech., 71, 39-49. https://doi.org/10.1007/BF01173936
  7. Ellahi, R. and Ashgar, S. (2007a), "Couette flow of a Burgers' fluid with rotation", Int. J. Fluid Mech. Res., 34(6), 548-561. https://doi.org/10.1615/InterJFluidMechRes.v34.i6.60
  8. Gates, W.D. (1968), "Vibrating angular rate sensor may threaten the gyroscope", Electronic, 41, 103-134.
  9. Green, A.E. and Lindsay, K.A. (1972), "Thermoelasticity", J. Elasticity, 2, 1-7. https://doi.org/10.1007/BF00045689
  10. Hayat, T., Ellahi, R. and Asghar, S. (2004a), "Unsteady periodic flows of a magnetohydrodynamic fluid due to non-coaxial rotations of a porous disk and fluid at infinity", Math. Comput. Model., 40, 173-179. https://doi.org/10.1016/j.mcm.2003.09.035
  11. Hayat, T., Ellahi, R. and Asghar, S. (2007b), Unsteady magnetohydrodynamic non-Newtonian flow due to non-coaxial rotations of a disk and a fluid at infinity", Chem. Eng. Commun., 194(1), 37-49. https://doi.org/10.1080/00986440600642868
  12. Hayat, T., Ellahi, R., Asghar, S. and Siddiqui, A.M. (2004b), "Flow induced by non-coaxial rotation of a porous disk executing non-torsional oscillating and second grade fluid rotating at infinity", Appl. Math. Model., 28, 591-605. https://doi.org/10.1016/j.apm.2003.10.011
  13. Hayat, T., Mumtaz, S. and Ellahi, R. (2003), "MHD unsteady flows due to non-coaxial rotations of a disk and a fluid at infinity", Acta Mech. Sinica, 19(3), 235-240. https://doi.org/10.1007/BF02484485
  14. Hou, P.F., Leung, A.Y.T. and Chen, C.P. (2008), "Three dimensional fundamental solution for transversely isotropic piezothermoelastic material", Int. J. Numer. Meth. Eng., 7, 84-100.
  15. Lord, H.W. and Shulman, Y. (1967), "A generalized dynamical theory of thermoelasticity", J. Mech. Phys., 15, 299-309. https://doi.org/10.1016/0022-5096(67)90024-5
  16. Mindlin, R.D. (1961), "On the equations of motion of piezoelectric crystals", Prob. Contin. Mech., 70, 282-290.
  17. Mindlin, R.D. (1974), "Equation of high frequency vibrations of thermo-piezoelectric plate", Int. J. Solid. Struct., 10, 625-637. https://doi.org/10.1016/0020-7683(74)90047-X
  18. Nowacki, W. (1978), "Some general theorems of thermo-piezo-electricity", J. Therm. Stress., 1, 171-182. https://doi.org/10.1080/01495737808926940
  19. Nowacki, W. (1979), "Foundations of linear piezoelectricity", Electromagnetic interactions in Elastic Solids, Springer, Wein, Chapter 1.
  20. Othman, M.I.A. (2004), "Effect of rotation on plane waves in generalized thermoelasticity with two relaxation times", Int. J. Solid. Struct., 41(11-12), 2939-2956. https://doi.org/10.1016/j.ijsolstr.2004.01.009
  21. Othman, M.I.A., Atwa, S.Y. and Farouk, R.M. (2008), "Generalized magneto-thermovisco-elastic plane waves under the effect of rotation without energy dissipation", Int. J. Eng. Sci., 46, 639- 653. https://doi.org/10.1016/j.ijengsci.2008.01.018
  22. Othman, M.I.A. and Atwa, S.Y. (2014), "Effect of rotation on a fibre-reinforced thermoelastic under Green-Naghdi theory and influence of gravity", Meccanica, 49, 23-36. https://doi.org/10.1007/s11012-013-9748-1
  23. Othman, M.I.A., Hasona, W.M. and Abd-Elaziz, E.M. (2014), "Effect of rotation on micropolar generalized thermoelasticity with two temperature using a dual-phase-lag model", Can. J. Phys., 92(2), 149-158. https://doi.org/10.1139/cjp-2013-0398
  24. Othman, M.I.A., Ezzat, M.A., Zaki, A. and El Karamany, A.S. (2002), "Generalized thermo-visco-elastic plane waves with two relaxation times", Int. J. Eng. Sci., 40, 1329-1347. https://doi.org/10.1016/S0020-7225(02)00023-X
  25. Othman, M.I.A. (2002), "Lord-shulman theory under the dependence of the modulus of elasticity on the reference temperature in two dimensional generalized thermoelasticity", J. Therm. Stress., 25(11), 1027-1045. https://doi.org/10.1080/01495730290074621
  26. Othman, M.I.A. and Atwa, S.Y. (2014), "Propagation of plane waves of a mode-I crack for a generalized thermo-elasticity under influence of gravity for different theories", Mech. Adv. Mater. Struct., 21(9), 97-709.
  27. Sharma, J.N. and Walia, V. (2007), "Effect or rotation on Rayleigh waves in piezothermoelastic half space", Int. J. Solid. Struct., 44, 1060-1072. https://doi.org/10.1016/j.ijsolstr.2006.06.005
  28. Sharma, J.N. and Walia, V. (2008), "Reflection of piezothermoelastic waves from the charge and stress free boundary of a transversely isotropic half space", Int. J. Eng. Sci., 46, 131-146. https://doi.org/10.1016/j.ijengsci.2007.10.003
  29. Soderkvist, J. (1994), "Micromachined gyroscope", Sens. Actuat. A, 43, 65-71. https://doi.org/10.1016/0924-4247(93)00667-S

피인용 문헌

  1. Effect of magnetic field on piezo-thermoelastic medium with three theories vol.7, 2017, https://doi.org/10.1016/j.rinp.2017.08.058
  2. Exact analytical solution of a homogeneous anisotropic piezo-thermoelasic half-space of a hexagonal type under different fields with three theories pp.1432-1858, 2018, https://doi.org/10.1007/s00542-018-4089-6
  3. A magneto-thermo-viscoelastic problem with fractional order strain under GN-II model vol.63, pp.1, 2017, https://doi.org/10.12989/sem.2017.63.1.089
  4. Plane wave propagation in a piezo-thermoelastic rotating medium within the dual-phase-lag model vol.26, pp.3, 2015, https://doi.org/10.1007/s00542-019-04567-0
  5. Effect of gravity on a micropolar thermoelastic medium with voids under three-phase-lag model vol.76, pp.5, 2015, https://doi.org/10.12989/sem.2020.76.5.579
  6. Reflection of electro-magneto-thermoelastic plane waves in a rotating medium in context of three theories with two-temperature vol.78, pp.1, 2015, https://doi.org/10.12989/sem.2021.78.1.023
  7. Memory dependent derivative effect on generalized piezo-thermoelastic medium under three theories vol.31, pp.6, 2021, https://doi.org/10.1080/17455030.2020.1730480