References
- Abd-alla, A.N. and Alsheikh, F.A. (2009), "Reflection and refraction of plane quasi-longitudinal waves at an interface of two piezoelectric media under initial stresses", Arch. Appl. Mech., 79, 843-857. https://doi.org/10.1007/s00419-008-0257-y
- Abd-alla, A.N., Alsheikh, F.A. and Al-Hossain, A.Y. (2012), "The reflection phenomena of quasi-vertical transverse waves in piezoelectric medium under initial stresses", Meccanica, 47, 731-744. https://doi.org/10.1007/s11012-011-9485-2
- Abd-Alla, A.E.N.N., Eshaq, H.A. and ElHaes, H. (2011), "The phenomena of reflection and transmission waves in smart nano materials", J. Comp. Theor. Nanosci., 8(9), 1670-1678. https://doi.org/10.1166/jctn.2011.1864
- Abd-alla, A.N., Hamdan, A.M., Giorgio, I. and Del Vescovo, D. (2014), "The mathematical model of reflection and reflection of longitudinal waves in thermo-piezoelectric materials", Arch. Appl. Mech., 84, 1229-1248. https://doi.org/10.1007/s00419-014-0852-z
- Biot, M.A. (1956), "Thermoelasticity and irreversible thermodynamics", J. Appl. Phys., 27, 240-253. https://doi.org/10.1063/1.1722351
- Chandrasekharaiah, D.S. (1988), "A generalized thermoelastic wave propagation in a semi-infinite piezoelectric rod", Acta Mech., 71, 39-49. https://doi.org/10.1007/BF01173936
- Ellahi, R. and Ashgar, S. (2007a), "Couette flow of a Burgers' fluid with rotation", Int. J. Fluid Mech. Res., 34(6), 548-561. https://doi.org/10.1615/InterJFluidMechRes.v34.i6.60
- Gates, W.D. (1968), "Vibrating angular rate sensor may threaten the gyroscope", Electronic, 41, 103-134.
- Green, A.E. and Lindsay, K.A. (1972), "Thermoelasticity", J. Elasticity, 2, 1-7. https://doi.org/10.1007/BF00045689
- Hayat, T., Ellahi, R. and Asghar, S. (2004a), "Unsteady periodic flows of a magnetohydrodynamic fluid due to non-coaxial rotations of a porous disk and fluid at infinity", Math. Comput. Model., 40, 173-179. https://doi.org/10.1016/j.mcm.2003.09.035
- Hayat, T., Ellahi, R. and Asghar, S. (2007b), Unsteady magnetohydrodynamic non-Newtonian flow due to non-coaxial rotations of a disk and a fluid at infinity", Chem. Eng. Commun., 194(1), 37-49. https://doi.org/10.1080/00986440600642868
- Hayat, T., Ellahi, R., Asghar, S. and Siddiqui, A.M. (2004b), "Flow induced by non-coaxial rotation of a porous disk executing non-torsional oscillating and second grade fluid rotating at infinity", Appl. Math. Model., 28, 591-605. https://doi.org/10.1016/j.apm.2003.10.011
- Hayat, T., Mumtaz, S. and Ellahi, R. (2003), "MHD unsteady flows due to non-coaxial rotations of a disk and a fluid at infinity", Acta Mech. Sinica, 19(3), 235-240. https://doi.org/10.1007/BF02484485
- Hou, P.F., Leung, A.Y.T. and Chen, C.P. (2008), "Three dimensional fundamental solution for transversely isotropic piezothermoelastic material", Int. J. Numer. Meth. Eng., 7, 84-100.
- Lord, H.W. and Shulman, Y. (1967), "A generalized dynamical theory of thermoelasticity", J. Mech. Phys., 15, 299-309. https://doi.org/10.1016/0022-5096(67)90024-5
- Mindlin, R.D. (1961), "On the equations of motion of piezoelectric crystals", Prob. Contin. Mech., 70, 282-290.
- Mindlin, R.D. (1974), "Equation of high frequency vibrations of thermo-piezoelectric plate", Int. J. Solid. Struct., 10, 625-637. https://doi.org/10.1016/0020-7683(74)90047-X
- Nowacki, W. (1978), "Some general theorems of thermo-piezo-electricity", J. Therm. Stress., 1, 171-182. https://doi.org/10.1080/01495737808926940
- Nowacki, W. (1979), "Foundations of linear piezoelectricity", Electromagnetic interactions in Elastic Solids, Springer, Wein, Chapter 1.
- Othman, M.I.A. (2004), "Effect of rotation on plane waves in generalized thermoelasticity with two relaxation times", Int. J. Solid. Struct., 41(11-12), 2939-2956. https://doi.org/10.1016/j.ijsolstr.2004.01.009
- Othman, M.I.A., Atwa, S.Y. and Farouk, R.M. (2008), "Generalized magneto-thermovisco-elastic plane waves under the effect of rotation without energy dissipation", Int. J. Eng. Sci., 46, 639- 653. https://doi.org/10.1016/j.ijengsci.2008.01.018
- Othman, M.I.A. and Atwa, S.Y. (2014), "Effect of rotation on a fibre-reinforced thermoelastic under Green-Naghdi theory and influence of gravity", Meccanica, 49, 23-36. https://doi.org/10.1007/s11012-013-9748-1
- Othman, M.I.A., Hasona, W.M. and Abd-Elaziz, E.M. (2014), "Effect of rotation on micropolar generalized thermoelasticity with two temperature using a dual-phase-lag model", Can. J. Phys., 92(2), 149-158. https://doi.org/10.1139/cjp-2013-0398
- Othman, M.I.A., Ezzat, M.A., Zaki, A. and El Karamany, A.S. (2002), "Generalized thermo-visco-elastic plane waves with two relaxation times", Int. J. Eng. Sci., 40, 1329-1347. https://doi.org/10.1016/S0020-7225(02)00023-X
- Othman, M.I.A. (2002), "Lord-shulman theory under the dependence of the modulus of elasticity on the reference temperature in two dimensional generalized thermoelasticity", J. Therm. Stress., 25(11), 1027-1045. https://doi.org/10.1080/01495730290074621
- Othman, M.I.A. and Atwa, S.Y. (2014), "Propagation of plane waves of a mode-I crack for a generalized thermo-elasticity under influence of gravity for different theories", Mech. Adv. Mater. Struct., 21(9), 97-709.
- Sharma, J.N. and Walia, V. (2007), "Effect or rotation on Rayleigh waves in piezothermoelastic half space", Int. J. Solid. Struct., 44, 1060-1072. https://doi.org/10.1016/j.ijsolstr.2006.06.005
- Sharma, J.N. and Walia, V. (2008), "Reflection of piezothermoelastic waves from the charge and stress free boundary of a transversely isotropic half space", Int. J. Eng. Sci., 46, 131-146. https://doi.org/10.1016/j.ijengsci.2007.10.003
- Soderkvist, J. (1994), "Micromachined gyroscope", Sens. Actuat. A, 43, 65-71. https://doi.org/10.1016/0924-4247(93)00667-S
Cited by
- Effect of magnetic field on piezo-thermoelastic medium with three theories vol.7, 2017, https://doi.org/10.1016/j.rinp.2017.08.058
- Exact analytical solution of a homogeneous anisotropic piezo-thermoelasic half-space of a hexagonal type under different fields with three theories pp.1432-1858, 2018, https://doi.org/10.1007/s00542-018-4089-6
- A magneto-thermo-viscoelastic problem with fractional order strain under GN-II model vol.63, pp.1, 2017, https://doi.org/10.12989/sem.2017.63.1.089
- Plane wave propagation in a piezo-thermoelastic rotating medium within the dual-phase-lag model vol.26, pp.3, 2015, https://doi.org/10.1007/s00542-019-04567-0
- Effect of gravity on a micropolar thermoelastic medium with voids under three-phase-lag model vol.76, pp.5, 2015, https://doi.org/10.12989/sem.2020.76.5.579
- Reflection of electro-magneto-thermoelastic plane waves in a rotating medium in context of three theories with two-temperature vol.78, pp.1, 2015, https://doi.org/10.12989/sem.2021.78.1.023
- Memory dependent derivative effect on generalized piezo-thermoelastic medium under three theories vol.31, pp.6, 2021, https://doi.org/10.1080/17455030.2020.1730480