DOI QR코드

DOI QR Code

Application of 10Be Dating Technique for Marine Terrace Studies and Its Limitations

해안단구 연구를 위한 10Be 연대측정법의 적용과 한계점

  • Received : 2015.10.05
  • Accepted : 2015.10.27
  • Published : 2015.10.30

Abstract

Although Quaternary marine terraces and onshore paleo-shoreline records provide clues to our understanding for the mode and nature of neotectonics in the Korean peninsula, it cannot be accomplished without knowledge on both independent information of the past sea level records and tectonic deformation field together with precise results of numerical dating for higher terraces. This study reported cosmogenic radionuclides ($^{10}Be$) dating results conducted in higher terraces in the eastern and western coasts of the Korean peninsula. As a result, the measured concentration ratio of $^9Be/^{10}Be$ and the exposure ages were much younger than expected. It implies that either there is possibility of error in experimental processes or the samples experienced a complex exposure history probably included a burial at some stage. Considering the past climatic conditions around the Korean peninsula and a possible complex exposure history after the emergence of marine terrace, the discovery of a suitable study area and a sampling site are an essential part of successful $^{10}Be$ dating technique.

해안단구와 육상에 남아있는 고해수준에 관한 기록들은 한반도 지반운동의 형태와 속성을 구분해 낼 가장 직접적인 증거로 사용될 수 있음에도 불구하고 아직 고위 해안단구들의 형성시기에 관한 절대연대 측정이 현실적으로 어렵다는 점과 과거 해수면 변동과 지반운동 간의 상대적 변화에 관한 부족한 정보로 인해 명확한 해석과 과학적 논의는 불완전한 상태이다. 본 연구는 한반도 고위 해안단구 연구에서 $^{10}Be$을 대상으로 한 우주선 기원핵종 절대연대 측정법의 실험결과를 보고하고 있다. 실험 결과, 동해안의 강릉시 정동진 일대와 서해안 지역 서천군 비인면 일대에서 채취한 해발고도 80 m 내외의 고위 해안단구 상의 기반암과 거력 퇴적물의 $^9Be/^{10}Be$ 집적량비와 노출 연대는 상대적으로 매우 낮고 젊은 연대를 보이고 있다. 이러한 결과는 실험과정에서의 오류 가능성을 포함하여 고위 해안단구의 복잡한 노출역사를 반영하는 것으로 판단된다. 특히 한반도의 기후환경과 해안단구가 육화된 뒤 겪을 것으로 추정되는 복잡한 노출 환경을 고려할 경우 앞으로 $^{10}Be$ 연대측정기술의 성공적인 적용을 위해서는 적합한 연구지역의 발굴과 시료채취가 가장 중요한 요인이 될 것으로 판단된다.

Keywords

References

  1. Bourles, D., Raisbeck, G.M., and Yiou, F., 1989, $^{10}Be$ and $^{9}Be$ in marine sediments and their potential for dating. Geochimica et Cosmochimica Acta, 53, 443-452. https://doi.org/10.1016/0016-7037(89)90395-5
  2. Burbank, D.W., and Anderson, R.S., 2001, Tectonic geomorphology. Blackwell Science, Oxford, UK, 49 p.
  3. Balco, G., 2001, Age calculation and error propagation for cosmogenic isotopes. UW Cosmogenic Isotope Laboratory, WA, USA.
  4. Balco, G., 2009, CRONUS $^{10}Be$-$^{26}Al$ exposure age calculator Version 2.2, WA, USA.
  5. Choi, J.H., Kim, J.W., Murray, A.S., Hong, D.G., Chang, H.W., and Cheong, C.S., 2009, OSL dating of marine terrace sediments on the southestern coast of Korea with implications for Quaternary tectonics. Quaternary International, 199, 3-14. https://doi.org/10.1016/j.quaint.2008.07.009
  6. Choi, J.H., Murray, A.S., Jain, M., Cheong, C.S., and Chang, H.W., 2003, Luminescence dating of well-sorted marine terrace sediments on the southeastern coast of Korea. Quaternary Science Reviews, 22, 407-421. https://doi.org/10.1016/S0277-3791(02)00136-1
  7. Choi, S.G., 1993, The Last Interglacial sea levels estimated from the morphostratigraphic comparison of the Late Pleistocene fluvial terraces in the eastern coast of Korea. Korean Journal of Quaternary Research, 7(1), 1-26. (in Korean)
  8. Choi, S.G., 1996, Quaternary sea levels estimated from river terraces of the Ungcheon River, Midwestern coast of South Korea. Journal of Korean Geography Society, 31(3), 613-629. (in Korean)
  9. Choi, S.J., 2004, Marine terrace of Daebo-Guryongpo-Gampo, SE Korea (II). Korean Journal of Economic and Environmental Geology, 37, 245-253. (in Korean)
  10. Chung, G.S., Lee, J.Y., Yang, D.Y., and Kim, J.Y., 2005, Architectural elements of the fluvial deposits of meander bends in midstream of the Yeongsan River. Journal of Korean Earth Science Society, 26(8), 809-820. (in Korean)
  11. Ditchburn, R.G., and Whitehead, N.E., 1994, The separation of $^{10}Be$ from silicates. 3rd Workshop of the South Pacific Environmental Radioactivity Association, 4-7.
  12. Gosse, J.C., Klein, J., Evenson, E.B., Lawn, B., and Middleton, R., 1995, Beryllium-10 dating of the duration and retreat of the last Pinedale glacial sequence. Science, 268 (5215), 1329-1333. https://doi.org/10.1126/science.268.5215.1329
  13. Hancock, G.S., Anderson, R.S., Chadwick, O.A., and Finkel, R.C., 1999, Dating fluvial terraces with $^{10}Be$ and $^{26}Al$ profiles: application to the Wind River, Wyoming. Geomorphology, 27, 41-60. https://doi.org/10.1016/S0169-555X(98)00089-0
  14. Hofmann, H.J., Beer, J., and Bonani, G., 1987, $^{10}Be$ halflife and AMS-standards. Nuclear Instruments and Methods in Physics Research B, 29, 32-36. https://doi.org/10.1016/0168-583X(87)90198-4
  15. Johnson, R.G., 2001, Last interglacial sea stands on Barbados and an early anomalous deglaciation timed by differential uplift. Journal of Geophysical Research, 106, 11543-11551. https://doi.org/10.1029/2000JC000235
  16. Kim, K.J., and Englert, P.A.J., 2004, In situ cosmogenic nuclide production of $^{10}Be$ and $^{26}Al$ in marine terraces, Fiordland, NewZealand. Nuclear Instruments and Methods in Physics Research B, 223-224, 639-644. https://doi.org/10.1016/j.nimb.2004.04.118
  17. Lee, D.Y., 1987, Stratigraphical research of the Quaternary deposits in the Korean peninsula. The Korean Journal of Quaternary Research, 1, 3-20. (in Korean)
  18. Lee, G.R., and Park, C.S., 2006, Properties of deposits and geomorphic formative ages on marine terraces in Gwangyang Bay, South sea of Korea, Korea. Journal of Korean Geography Society, 41, 346-360. (in Korean)
  19. McLaren, S.J. and Rowe, P.J., 1996, The reliability of uranium-series mollusc dates from the western Mediterranean basin. Quaternary Science Reviews, 15, 709-717. https://doi.org/10.1016/0277-3791(96)00032-7
  20. Neumann, A.C., and Macintyre, I.G., 1985, Reef response to sea level rise: keep-up, catch-up or give-up. Proceedings of the Fifth International Coral Reef Congress, 3, 105-110.
  21. Nunn, P.D., Ollier, C., Hope, G., Rodda, P., Omura, A., and Peltier, W.R., 2002, Late Quaternary sea-level and tectonic changes in northeast Fiji. Marine Geology, 187, 299-311. https://doi.org/10.1016/S0025-3227(02)00296-7
  22. Oh, G.H., 1981, Marine terrace and their tectonic deformation on the coast of Southern part of the Korean peninsula. Bulletin of the Department of Geography University of Tokyo, 13, 1-61.
  23. Owen, L.A., Frankel, K.L., Knott, J.R., Reynhout, S., Finkel, R.C., Dolan, J.F., and Lee, J., 2011, Beryllium-10 terrestrial cosmogenic nuclide surface exposure dating of Quaternary landforms in Death Valley. Geomorphology, 125, 541-557. https://doi.org/10.1016/j.geomorph.2010.10.024
  24. Pedoja, K., Shen, J.W., Kershaw, S., and Tang, C., 2008, Coastal Quaternary morphologies on the northern coast of the South China Sea, China, and their implications for current tectonic models; a review and preliminary study. Marine Geology, 255, 103-117. https://doi.org/10.1016/j.margeo.2008.02.002
  25. Quigley, M., Sandiford, M., Fifield, K., and Alimanovic, A., 2007, Bedrock erosion and relief production in the northern Flinders Ranges, Australia. Earth Surface Processes and Landforms, 32, 929-944. https://doi.org/10.1002/esp.1459
  26. Repka, J.L., Anderson, R.S., and Finkel, R.C., 1997, Cosmogenic dating of fluvial terraces, Fremont River, Utah. Earth and Planetary Science Letters, 152, 59-73. https://doi.org/10.1016/S0012-821X(97)00149-0
  27. Shin, J., 2012a, Late Neogene and Quaternary vertical motions in the Otway Coast, southeast Australia (I): Development and geochronology of Quaternary marine terraces. Journal of Korean Earth Science Society, 33(6), 519-533. https://doi.org/10.5467/JKESS.2012.33.6.519
  28. Shin, J., 2012b, Late Neogene and Quaternary vertical motions in the Otway Coast, southeast Australia (II): Epeirogenic uplift driven by lithospheric flexural deformation. Journal of Korean Earth Science Society, 33(6), 534-543. https://doi.org/10.5467/JKESS.2012.33.6.534
  29. Shin, J., and Hwang, S.I., 2014, A critical review on setting up the concept, timing and mechanism of Tertiary tilted flexural mode of the Korean peninsula: A new hypothesis derived from plate tectonics. Journal of Korean Geography Society, 49(2), 200-220. (in Korean)
  30. Shin, J., and Sandiford, M., 2012, Neogene uplift in the Korean peninsula linked to small-scaled mantle convection at sinking slab edge. Journal of Korean Geography Society, 47(3), 328-346.
  31. Siddall, M., Chappell, J., and Potter, E.K., 2006, Eustatic sea level during past interglacials. In Sirocko, F., Claussen, M., Sanchez Goi, M.F., and Litt, T. (eds.), The climate of past interglacials. Elsevier, Amsterdam, 75-92.
  32. Stone, J.O., 2001, Extraction of Al & Be from quartz for isotopic analysis. UW Cosmogenic Isotopes Manual 8.
  33. Yoon, S.O., and Hwang, S.I., 2000, Mechanism of the marine terraces formation on the Southeastern coast in Korea. Journal of Korean Geography Society, 35(1), 17-38 (in Korean)
  34. Yoon, S.O., Hwang, S.I., and Ban, H.K., 2003, Geomorphic development of marine terraces at Jeongdongjin-Daejin area on the East coast, Central part of Korean Peninsula. Journal of Korean Geography Society, 38, 156-172 (in Korean)
  35. Yoon, S.O., Park, C.S., and Hwang, S.I., 2015, Geomorphic development of marine terrace in the Nampo area, Boryeong-si, Chungnam Province. Journal of the Korea Geomorphological Association, 22(1), 75-87. (in Korean)