DOI QR코드

DOI QR Code

Artificial Sea Ice Increasing to Mitigate Global Warming

지구 온난화 경감을 위한 인공해빙증가

  • Byun, Hi-Ryong (Department of Environmental Atmospheric Sciences, Pukyong National University) ;
  • Park, Chang-Kyun (School of Earth and Environmental Sciences, Seoul National University)
  • 변희룡 (부경대학교 환경대기 과학과) ;
  • 박창균 (서울대학교 지구환경과학부)
  • Received : 2015.08.10
  • Accepted : 2015.10.28
  • Published : 2015.10.30

Abstract

This study suggests a method of alleviating global warming by the increase of the Earth surface albedo through Artificial Sea ice Increasing (ASI) over the Available Freezing Areas (AFA). The method is developed based on the fact that the large sea surface area in or near the Arctic and the Antarctic has no ice even though both water and air temperatures are below zero and the artificial sea ice generation is thus available. The mean energy of $0.85Wm^{-2}$, which was suspected of adding to the earth by the global warming effect was calculated to offset at once when the sea ice area about $4.09{\times}10^6km^2$ was additionally increased. In addition, three techniques for producing ice plates on the sea surface (using ships, installation apparatus, and floating matter such as Green Cell Foam) for ASI were proposed. According to the result of simple analysis using the energy balance model, when ASI was maximally operated only for 3 months (September, October, and November) over AFA, it is expected that the annual mean temperature of earth surface would be decreased about $0.11^{\circ}C$ in the following year. On the other hand, in case of generating the artificial sea ice in all four seasons, a risk of triggering snowball earth was detected.

본 연구에서는 북극과 남극에서 기온과 수온이 영하임에도 불구하고 얼음이 없는 광범위한 지역(인공증빙가능역)이 존재하는 것에 주목하여, 이 지역에 인공적으로 해빙을 생성하여 지구 표면의 알베도를 높이는 방식으로 지구온난화를 완화하는 방법을 제안하였다. 대략 $4.09{\times}10^6km^2$의 해빙면적이 추가되면 지구온난화 효과로 가정되는 약 $0.85Wm^{-2}$ 에너지가 상쇄된다고 계산되었다. 또한, 인공적으로 해빙을 생성하기 위한 세 가지 빙판 생성 방법(배로 물 뿌리기, 빙판생성장치 운용, 수면에 GCF부유물질 띄우기)을 제안하였다. 간단한 에너지평형모형 실험에 따르면, 3개월 (9, 10, 11월) 동안 인공증빙가능역에 해빙을 최대로 생성할 경우, 다음해에 대략 $0.11^{\circ}C$의 지구표면온도 하강이 기대되었다. 반면에 모든 계절을 통해 생성할 경우, 오히려 지구 냉각화를 초래할 위험성도 발견되었다.

Keywords

References

  1. Angel, R., 2006, Feasibility of cooling the Earth with a cloud of small spacecraft near the inner Lagrange point (L1). Proceedings of the National Academy of Sciences, 103, 17184-17189. https://doi.org/10.1073/pnas.0608163103
  2. Barrett, S., 2002, Toward a better climate treaty. Policy Matters 01-29, AEI Brookings Joint Center for Regulatory Studies
  3. Barry, R.G., Serreze, M.C., Maslanik, J.A., and Preller, R.H., 1993, the Arctic sea ice-climate system: observations and modelling. Reviews of Geophysics, 31, 397-422. https://doi.org/10.1029/93RG01998
  4. Budyko, M.I., 1969, The effect of solar radiation variations on the climate of the Earth. Tellus, 21, 611-619. https://doi.org/10.1111/j.2153-3490.1969.tb00466.x
  5. Byun, H.R., 2011, Apparatus and method for producing and storing more ice over ocean. US Patent 12/704956.
  6. Byun, H.R., 2012, Artificial freezing apparatus and freezing method therefor. US Patent 13/386893.
  7. Byun, H.R., 2013, Ice floater for facilitating ice-freezing on water surface. US Patent 13/740782 (Register allowed).
  8. Byun, H.R., Tanaka, H.L., Michalopoulou, H., Pandey, R.P., and Azzaya, D.A., 2008, Study on ice control for the production of 5th-generation water resources and the arrest of global warming. Asia-Pacific Journal of Atmospheric Sciences, 44, 137-147.
  9. Cavalieri, D.J. and Parkinson, C.L., 2008, The Antarctic sea ice variability and trends, 1979-2006. Journal of Geophysical Research: Oceans, doi:10.1029/2007JC004564.
  10. Cruzen, P.J., 2006, Albedo enhancement by stratospheric sulfur injections: a contribution to resolve a policy dilemma? Climate Change, 77, 211-219. https://doi.org/10.1007/s10584-006-9101-y
  11. Ehn, K. J., Hwang, B. J., Galley R., and Barber D. G., 2007, Investigations of newly formed sea ice in the Cape Bathurst polyna: 1. structure, physical and optical properties. Journal of Geophysical Research, DOI:112,10.1029/2006JC003702.
  12. Hansen, J., Nazarenko, L. et al., 2005, Earth's energy imbalance: confirmation and implications. Science, 308, 1431-1435. https://doi.org/10.1126/science.1110252
  13. Hegerl, G.C., and Solomon, S., 2009, Risks of climate engineering. Science, 325, 955-956. https://doi.org/10.1126/science.1178530
  14. Hellmer, H.H., Kauker, F., Timmermann, R., Determann, J., and Rae, J., 2012, Twenty-first-century warming of a large The Antarctic ice-shelf cavity by a redirected coastal current. Nature, 485, 225-228. https://doi.org/10.1038/nature11064
  15. Intergovernmental Panel on Climate Change (IPCC), 2007, The fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press: Cambridge, UK.
  16. Keith, D.W., 2000, Geoengineering the climate: history and prospect 1. Annual Review of Energy and the Environment, 25, 245-284. https://doi.org/10.1146/annurev.energy.25.1.245
  17. Latham, J., Rasch, P., Chen, C.C., Kettles, L., Gadian, A., Gettelman, A., Morrison, H., Bower, K., and Choularton, T., 2008, Global temperature stabilization via controlled albedo enhancement of low-level maritime clouds. Philosophical Transactions of the Royal Society of London, 366, 3969-3987. https://doi.org/10.1098/rsta.2008.0137
  18. Maksym T., and Markus T., 2008, Antarctic sea ice thickness and snow-to-ice conversion from atmospheric reanalysis and passive microwave snow depth. Journal of Geophysical Research, 113, DOI:10.1029/2006JC004085.
  19. McGehee, R., and Lehman, C.A., 2012, Paleoclimate model of ice-albedo feedback forced by variations in Earth's orbit. SIAM Journal on Applied Dynamical Systems, 11, 684-707. https://doi.org/10.1137/10079879X
  20. North, G.R., 1975, Theory of energy-balance climate models. Journal of the Atmospheric Sciences, 32, 2033-2043. https://doi.org/10.1175/1520-0469(1975)032<2033:TOEBCM>2.0.CO;2
  21. Parkinson, C.L., Comiso, J.C., Zwally, H.J., Cavalieri, D.J., Gloersen, P., and Campbell, W.J., 1987, Arctic sea ice, 1973-1976: satellite passive-microwave observations. NASA Special Publication NASA SP-489.
  22. Robock, A., 2008, 20 reasons why geoengineering may be a bad idea. Bulletin of the Atomic Scientists, 64, 14-18. https://doi.org/10.1080/00963402.2008.11461140
  23. Roe, G.H., and Baker, M.B., 2010, Notes on a catastrophe: a feedback analysis of snowball Earth. Journal of Climate. 23, 4694-4703. https://doi.org/10.1175/2010JCLI3545.1
  24. Rogelj, J., Nabel, J., Chen, C., Hare, W., Markmann, K., Meinshausen, M., Schaeffer, M., Macey, K., and Hohne, N., 2010, Copenhagen accord pledges are paltry. Nature. 464, 1126-1128. https://doi.org/10.1038/4641126a
  25. Serreze, M.C., Barrett, A.P., Slater, A.G., Steele, M., Zhang, J., and Trenberth, K.E., 2007, The large-scale energy budget of the Arctic. Journal of Geophysical Research: Atmospheres, doi:10.1029/2006JD008230.
  26. Trenberth, K.E., Fasullo, J.T., and Kiehl, J., 2009, Earth's global energy budget. Bulletin of the American Meteorological Society, 90, 311-323. https://doi.org/10.1175/2008BAMS2634.1
  27. Tung, K.K., 2007, Topics in mathematical modeling. Princeton University Press, USA.
  28. Wallace, J.M., and Hobbs, P.V., 2006, Atmospheric Science: an introductory survey, 2nd ed. Academic Press, UK.
  29. Wigley, T.M.L., 2006, A combined mitigation/geoengineering approach to climate stabilization. Science. 314, 452-454. https://doi.org/10.1126/science.1131728