초록
기하분포에 기초한 관리도는 불량품이 드물게 발생하는 고품질공정에서 불량률의 변화를 효율적으로 탐지할 수 있다고 알려져 있다. 이러한 관리도를 사용할 때 기본적인 가정은 관리상태일 때의 불량률이 알려져 있거나 또는 정확하게 추정되었다는 것이다. 그러나 고품질공정에서 불량률은 아주 작기 때문에 이를 정확하게 추정하기가 쉽지 않으며 또한 아주 큰 표본크기가 필요한 경우도 종종 발생한다. 일반적으로 제1국면에서 관리상태의 불량률을 추정할 때 최대우도추정량을 사용하지만, 이 논문에서는 베이즈추정량의 사용을 제안하였다. 베이즈추정량을 사용할 경우 실무자의 사전지식을 반영할 수 있으며 표본에 불량품이 발견되지 않을 경우 발생하는 최대우도추정량의 문제점을 해결할 수 있다는 장점이 있다. 기하 관리도와 기하누적합 관리도에서 베이즈추정량을 사용한 경우와 최대우도추정량을 사용한 경우를 비교한 결과, 표본의 크기가 크지 않은 경우 베이즈추정량을 사용하는 것의 효율이 더 좋음을 알 수 있었다.
Charts based on geometric distribution are effective to monitor the proportion of nonconforming items in high-quality processes where the in-control proportion nonconforming is low. The implementation of this chart is often based on the assumption that in-control proportion nonconforming is known or accurately estimated. However, accurate parameter estimation is very difficult and may require a larger sample size than that available in practice for high-quality process where the proportion of nonconforming items is very small. An inaccurate estimate of the parameter can result in estimated control limits that cause unreliability in the monitoring process. The maximum likelihood estimator (MLE) is often used to estimate in-control proportion nonconforming. In this paper, we recommend a Bayes estimator for the in-control proportion nonconforming to incorporate practitioner knowledge and avoid estimation issues when no nonconforming items are observed in the Phase I sample. The effects of parameter estimation on the geometric chart and the geometric CUSUM chart are considered when the MLE and the Bayes estimator are used. The results show that chart performance with estimated control limits based on the Bayes estimator is generally better than that based on the MLE.