참고문헌
- Ait-Sahalia, Y. (1999). Transition densities for interest rate and other nonlinear diffusions, Journal of Finance, 54, 1361-1395. https://doi.org/10.1111/0022-1082.00149
- Ait-Sahalia, Y. (2002). Maximum-likelihood estimation of discretely-sampled diffusions: A closed-form approximation approach, Econometrica, 70, 223-262. https://doi.org/10.1111/1468-0262.00274
- Ait-Sahalia, Y. (2008). Closed-form likelihood expansions for multivariate diffusions, The Annals of Statistics, 36, 906-937. https://doi.org/10.1214/009053607000000622
- Beskos, A., Papaspiliopoulos, O., Robert, G. O. and Fearnhead, P. (2006). Exact and computationally efficient likelihood-based estimation for discretely observed diffusion processes, The Journal of the Royal Statistical Society, Series B., 68, 333-383. https://doi.org/10.1111/j.1467-9868.2006.00552.x
- Chan, K. C., Karolyi, G. A., Longstaff, F. A. and Sanders, A. B. (1992). An empirical comparison of alternative models of the short-term interest rate, Journal of Finance, 47, 1209-1227. https://doi.org/10.1111/j.1540-6261.1992.tb04011.x
- Chang, J. and Chen, S. X. (2011). On the approximate maximum likelihood estimation for diffusion processes, The Annals of Statistics, 39, 2820-2851. https://doi.org/10.1214/11-AOS922
- Choi, Y. and Lee, Y. D. (2013). Improved generalized method of moment estimators to estimate diffusion models, The Korean Journal of Applied Statistics, 26, 767-783. https://doi.org/10.5351/KJAS.2013.26.5.767
- Dacunha-Castelle, D. and Florens-Zmirou, D. (1986). Estimation of the coefficients of a diffusion from discrete observations, Stochastics, 19, 263-284. https://doi.org/10.1080/17442508608833428
- Durham, G. and Gallant, R. (2001). Numerical Techniques for Maximum Likelihood Estimation of Continuous-Time Diffusion Processes, Technical report.
- Egorov, A. V., Li, H. and Xu, Y. (2003). Maximum likelihood estimation of time inhomogeneous diffusions, Journal of Econometrics, 114, 107-139. https://doi.org/10.1016/S0304-4076(02)00221-X
- Elerian, O., Chib, S. and Shephard, N. (2001). Likelihood inference for discretely observed nonlinear diffusions, Econometrika, 69, 959-993. https://doi.org/10.1111/1468-0262.00226
- Eraker, B. (2001). MCMC analysis of diffusion models with application to finance. Journal of Business & Economic Statistics, 19, 177-191. https://doi.org/10.1198/073500101316970403
- Filipovic, D., Mayerhofer, E. and Schneider, P. (2013). Density approximations for multivariate affine jumpdiffusion processes, Journal of Econometrics, 176, 93-111. https://doi.org/10.1016/j.jeconom.2012.12.003
- Hurn, A., Jeisman, J. and Lindsay, K. (2007). Seeing the wood for the trees: A critical evaluation of methods to estimate the parameters of stochastic differential equations. Journal of Financial Econometrics, 5, 390-455. https://doi.org/10.1093/jjfinec/nbm009
- Kessler, M. (1997). Estimation of an ergodic diffusion from discrete observations, Scandinavian Journal of Statistics, 24, 211-229. https://doi.org/10.1111/1467-9469.00059
- Lee, E., Choi, Y. and Lee, Y. D. (2010). A note on series approximation of transition density of diffusion processes, The Korean Journal of Applied Statistics, 23, 383-392. https://doi.org/10.5351/KJAS.2010.23.2.383
- Lee, Y. D. and Lee, E. (2013). An approximation of the Cumulant generating functions of diffusion models and the Pseudo-likelihood estimation method, Korean Journal of Management Science, 38, 201-216.
- Lee, Y. D., Song, S. and Lee, E. (2014). The delta expansion for the transition density of diffusion models, Journal of Econometrics, 178, 694-705. https://doi.org/10.1016/j.jeconom.2013.10.008
- Li, C. (2013). Maximum-likelihood estimation for diffusion processes via closed-form density expansions, The Annals of Statistics, 41, 1350-1380. https://doi.org/10.1214/13-AOS1118
- Pederson, A. R. (1995). A New Approach to maximum likelihood estimation for stochastic differential equations based on discrete observations, Scandinavian Journal of Statistics, 22, 55-71.
- Rogers, L. (1985). Smooth transitional densities for one-dimensional diffusions, Bulletin of the London Mathematical Society, 17, 157-161. https://doi.org/10.1112/blms/17.2.157
- Shoji, I. and Ozaki, T. (1998). Estimation for nonlinear stochastic differential equations by a local linearization method, Stochastic Analysis and Applications, 16, 733-752. https://doi.org/10.1080/07362999808809559