DOI QR코드

DOI QR Code

Evaluation of the Bone Defect Regeneration after Implantation with Cuttlebone in Rabbit

토끼에서 오적골 이식 후 골 결손부 재생 평가

  • Won, Sangcheol (College of Veterinary Medicine.Veterinary Medical Research Institute, Jeju National University) ;
  • Lee, Joo-Myoung (College of Veterinary Medicine.Veterinary Medical Research Institute, Jeju National University) ;
  • Park, Hyunjung (College of Veterinary Medicine.Veterinary Medical Research Institute, Jeju National University) ;
  • Seo, Jongpil (College of Veterinary Medicine.Veterinary Medical Research Institute, Jeju National University) ;
  • Cheong, Jongtae (College of Veterinary Medicine.Veterinary Medical Research Institute, Jeju National University)
  • 원상철 (제주대학교 수의과대학.제주대학교 수의과학연구소) ;
  • 이주명 (제주대학교 수의과대학.제주대학교 수의과학연구소) ;
  • 박현정 (제주대학교 수의과대학.제주대학교 수의과학연구소) ;
  • 서종필 (제주대학교 수의과대학.제주대학교 수의과학연구소) ;
  • 정종태 (제주대학교 수의과대학.제주대학교 수의과학연구소)
  • Accepted : 2015.10.23
  • Published : 2015.10.30

Abstract

Bone grafting is widely used to bridge major bone defects or to promote bone union. In the evaluation of bone defect regeneration, 5 mm-diameter defects were created in rabbit calvaria. Concerning biocompatibility, fibrous capsule thickness of CBHA (hydroxyapatite from cuttlebone) was significantly thinner than that of CB (cuttlebone) and CHA (hydroxyapatite from coral) (p < 0.05) at 2 and 4 weeks after implantation. Concerning 12-week total changes of radiologic gray-level histogram, CBHA was significantly higher than CHA (p < 0.05). In the evaluation of bone defect regeneration, bone formation of CHA was significantly higher than that of CB and CBHA (p < 0.05). Based on the clinical and histological results, CBHA would be a safe material for use inside the body and has more effective osteoconduction than CB. It is suggested that CBHA is a valuable bone graft material.

골대체제는 지연유합이나 유합부전 그리고 골절술과 관절고정술 시 골편의 연속성 확립이 필요한 경우 골절의 주요 결손부위를 채우는데 주로 활용되고 있다. 본 연구에서는 오적골의 다양한 전처리 후 직경 5 mm 두께 2 mm의 형태로 가공하여 rhBMP-2의 담체로써 골전도력과 골유도력을 평가하고자 하였다. 결합조직의 두께는 2, 4주차 모두 오적골유래 hydroxyapatite 적용군(CBHA)에서 가장 유의성 있게 얇았다(p < 0.05). Radiologic gray-level histogram의 측정에서는 4주차에서 CBHA군이 산호유래 hydroxyapatite 적용군(CHA)군보다 유의성 있게 높게 나타났으며(p < 0.05), 12주차에서는 CHA군의 변화율이 가장 적었다. 전체 12주 동안의 변화율에서는 CBHA가 가장 많은 변화를 보였다. 폐쇄율에 있어서는 4, 8, 12주차 모두 CHA군이 다른 군에 비해 유의성 있게 높게 나타났으며(p < 0.05), 8주차에서는 bmp를 적용한 오적골 적용군(CB1bmp)이 CBHA군보다 유의성 있게 높게 나타났다(p < 0.05). 이상의 결과들은 CBHA가 생체 내에 적용하는 골대체재로서 골유도능력이 우수한 것으로 나타났다. 따라서 CBHA는 편평골에 있어 생체적 합성이 뛰어난 골대체재로 그 가치가 있는 것으로 생각되며, 수의 임상에 있어서 활용성이 매우 높을 것으로 사료된다.

Keywords

References

  1. Ben-Nissan B. Natural bioceramics: from coral to bone and beyond. Curr Opin Solid State Mat Sci 2003; 7: 283-288. https://doi.org/10.1016/j.cossms.2003.10.001
  2. Birchall JD, Thomas NL. On the architecture and function of cuttlefish bone. J Mater Sci 1983; 18: 2081-2086. https://doi.org/10.1007/BF00555001
  3. Chiroff RT, White EW, Weber JN, Roy DM. Tissue ingrowth of replamineform implants. J Biomed Mater Res 1975; 9: 29-45. https://doi.org/10.1002/jbm.820090407
  4. Choi IH, Lee CI. Effectiveness of transplantation by freezedried bone of goat to dogs. Korean J Vet Clin Med 1998; 15: 442-449.
  5. Dupoirieux L, Pourquier D, Picot MC, Neves M. The effect of pentosan polysulphate on bone healing of rat cranial defects. J Craniomaxillofac Surg 1999; 27: 314-320. https://doi.org/10.1054/jcms.1999.0901
  6. Dupoirieux L, Pourquier D, Souyris F. Powdered eggshell: a pilot study on a new bone substitute for use in maxillofacial surgery. J Craniomaxillofac Surg 1995; 23: 187-194. https://doi.org/10.1016/S1010-5182(05)80009-5
  7. Durmu E, Celik I, Aydln MF, Ylldlrlm G, Sur E. Evaluation of the biocompatibility and osteoproductive activity of ostrich eggshell powder in experimentally induced calvarial defects in rabbits. J Biomed Mater Res Part B: Appl Biomater 2007; 86B: 82-89.
  8. Flatley TJ, Lynch KL, Benson M. Tissue response to implants of calcium phosphate ceramic in the rabbit spine. Clin Orthop Relat Res 1983; 179: 246-252.
  9. Gu SJ, Sohn JY, Lim HC, Um YJ, Jung UW, Kim CS, Lee YK, Choi SH, The effects of bone regeneration in rabbit calvarial defect with particulated and block type of hydroxyapatite. J Korean Acad Periodontol 2009; 39: 321-329. https://doi.org/10.5051/jkape.2009.39.3.321
  10. Guillemin G, Patat JL, Fournie J, Chetail M. The use of coral as a bone graft substitute. J Biomed Mater Res 1987; 21: 557-567. https://doi.org/10.1002/jbm.820210503
  11. Huh JY, Choi BH, Kim BY, Lee SH, Zhu SJ, Jung JH. Critical size defect in the canine mandible. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2005; 100: 296-301. https://doi.org/10.1016/j.tripleo.2004.12.015
  12. Ivankovic H, Ferrer GG, Tkalcec E, Orlic S, Ivankovic M. Preparation of highly porous hydroxyapatite from cuttlefish bone. J Mater Sci: Mater Med 2009; 20: 1039-1046.
  13. Itoh T, Mochizuki M, Nishimura R, Matsunaga S, Kadosawa T, Kokubo S, Yokota S, Sasaki N. Repair of ulnar segmental defect by recombinant human bone morphogenetic protein-2 in dogs. J Vet Med Sci 1998; 60: 451-458. https://doi.org/10.1292/jvms.60.451
  14. Jung SW, Jung JH, Chae GJ, Jung UW, Kim CS, Cho KS, Chai JK, Kim CK, Choi SH. The analysis of bone regenerative effect with carriers of bone morphogenetic protein in rat calvarial defects. J Korean Acad Periodontol 2007; 37: 733-742. https://doi.org/10.5051/jkape.2007.37.4.733
  15. Karaismailoglu TN, Tomak Y, Andac A, Ergun E. Comparison of autograft, coralline graft, and xenograft in promoting posterior spinal fusion. Acta Orthop Traumatol Turc 2002; 36: 147-154.
  16. Kim HS, Lee MY, Lee SC. Characteristics of sepiae os as a calcium source. J Korean Soc Food Sci Nutr 2000; 29: 743-746.
  17. Kim JH, Kim CH, Kim KW. Bone healing capacity of the collagen bone filler (TERUPLUG$^{(R)}$) and rhBMP-2 in rabbit cranium defect. J Kor Oral Maxillofac Surg 2008a; 34: 119-130.
  18. Kim, JJ, Kim HJ, Lee KS. Evaluation of biocompatibility of porous hydroxyapatite developed from edible cuttlefish bone. Key Engineering Materials 2008b; 361: 155-158.
  19. Lee CH, Jang JH, Lee JM, Suh JY, Park JW. Histomorphometric evaluation of bone healing with natural calcium carbonate derived bone substitute in rat calvarial defect. J Korean Acad Periodontol 2008a; 38: 83-90. https://doi.org/10.5051/jkape.2008.38.1.83
  20. Lee SK, Kim JS, Kang EJ, Eum TK, Kim CS, Cho KS, Chai JK, Kim CK, Choi SH. Effects of rhBMP-2 with various carriers on bone regeneration in rat calvarial defect. J Korean Acad Periodontol 2008b; 38: 125-134. https://doi.org/10.5051/jkape.2008.38.2.125
  21. Lu JX, Flautre B, Anselme K, Hardouin P, Gallur A, Descamps M, Thierry B. Role of interconnections in porous bioceramics on bone recolonization in vitro and in vivo. J Mater Sci Mater Med 1999; 10: 111-120. https://doi.org/10.1023/A:1008973120918
  22. Okii N, Nishimura S, Kurisu K, Takeshima Y, Uozumi T. In vivo histological changes occurring in hydroxyapatite cranial reconstruction. Neurol Med Chir 2001; 41: 100-104. https://doi.org/10.2176/nmc.41.100
  23. Park JW, Bae SR, Suh JY, Lee DH, Kim SH, Kim H, Lee CS. Evaluation of bone healing with eggshell-derived bone graft substitutes in rat calvaria: A pilot study. J Biomed Mater Res 2008; 87A: 203-214. https://doi.org/10.1002/jbm.a.31768
  24. Roy DM, Linnehan SK. Hydroxyapatite formed from Coral Skeletal Carbonate by Hydrothermal Exchange. Nature 1974; 247: 220-222. https://doi.org/10.1038/247220a0
  25. Sohn JY, Park JC, Um YJ, Jung UW, Kim CS, Cho KS, Choi SH. Spontaneous healing capacity of rabbit cranial defects of various sizes. J Periodontal Implant Sci 2010; 40: 180-187. https://doi.org/10.5051/jpis.2010.40.4.180
  26. Vuola J, Goransson H, Bohling T, Asko-Seljavaara S. Bone marrow induced osteogenesis in hydroxyapatite and calcium carbonate implants. Biomaterials 1996; 17: 1761-1766. https://doi.org/10.1016/0142-9612(95)00351-7
  27. Weibrich G, Trettin R, Gnoth SH, Duschner HGH, Wagner W. Analysis of the size of the specific surface area of bone regeneration materials by gas adsorption. Mund Kiefer Gesichtschir 2000; 156: 1-5.
  28. Zegzula HD, Buck DC, Brekke J, Wozney JM, Hollinger JO. Bone formation with use of rhBMP-2 (recombinant human bone morphogenetic protein-2). J Bone Joint Surg Am 1997; 79: 1778-1790. https://doi.org/10.2106/00004623-199712000-00003