DOI QR코드

DOI QR Code

Multi-mode Kernel Weight-based Object Tracking

멀티모드 커널 가중치 기반 객체 추적

  • Kim, Eun-Sub (Korea Electronics Technology Institute) ;
  • Kim, Yong-Goo (Department of Newmedia, Korean German Institute of Technology) ;
  • Choi, Yoo-Joo (Department of Newmedia, Korean German Institute of Technology)
  • 김은섭 (전자부품연구원) ;
  • 김용구 (한독미디어대학원대학교, 뉴미디어콘텐츠학과) ;
  • 최유주 (한독미디어대학원대학교, 뉴미디어콘텐츠학과)
  • Received : 2015.07.25
  • Accepted : 2015.08.31
  • Published : 2015.09.01

Abstract

As the needs of real-time visual object tracking are increasing in various kinds of application fields such as surveillance, entertainment, etc., kernel-based mean-shift tracking has received more interests. One of major issues in kernel-based mean-shift tracking is to be robust under partial or full occlusion status. This paper presents a real-time mean-shift tracking which is robust in partial occlusion by applying multi-mode local kernel weight. In the proposed method, a kernel is divided into multiple sub-kernels and each sub-kernel has a kernel weight to be determined according to the location of the sub-kernel. The experimental results show that the proposed method is more stable than the previous methods with multi-mode kernels in partial occlusion circumstance.

최근, 감시시스템, 게임, 영화등 다양한 분야에서 영상을 이용한 실시간 객체 추적의 필요성이 높아짐에 따라, 커널기반 mean-shift 추적 기법에 대한 관심이 높아지고 있다. 커널 기반 mean-shift 객체 추적에 있어서 주요한 몇 가지 문제점들 중, 첫번째로 추적 목표 객체에 대한 부분 가림 흑은 전체 가림 상황에서의 객체 추적의 문제를 들 수 있다. 본 논문에서는 멀티모드 지역적 커널 가중치를 적용함드로써 부분 가림 상황에서도 안정적드로 객체를 추적할 수 있는 실시간 mean-shift 추적 기법을 제안한다. 제안기법에서는 단일 커널을 사용하는 대신 여러 개의 서브 커널들로 구성된 커널을 사용하고, 각 서브 커널의 위치에 따른 지역적 커널 가중치를 적용한다. 기존의 멀티모드 커널 기반의 방법과 비교한 실힘을 통하여 본 제안 방법이 보다 안정적드로 객체를 추적할 수 있음을 보였다.

Keywords

References

  1. A. Yilmaz, O. Javed, M. Shah. Object tracking: a survey, ACM Computing Surveys, 2006:38(4): 45, Article 13.
  2. M. J. Patel, B. Bhatt. A comparative study of object tracking technoques, International Journal of Innovative Research in Science, Engineering and Technolgy, 2015: 4(3): 1361-1364.
  3. D. Comaniciu, V. Ramesh, P. Meer. Kernel-based object tracking, IEEE Transactions on Pattern Analysis and Machine Intelligence 2003:25(5):564-577. https://doi.org/10.1109/TPAMI.2003.1195991
  4. Z. H. Khan, I. Y.-H. Gu, A. G. Backhouse. Robust Visual Object Tracking using Multi-Mode Anisotropic Mean Shift and Particle Filters, IEEE Transactions on Circuits and Systems for Video Technology 2011:21(1):74-87. https://doi.org/10.1109/TCSVT.2011.2106253
  5. S. Zhang, Robust visual tracking based on occlusion detection and particle redistribution, ICIMCS 2010:159-162.
  6. J. Jeyakar, R. V. Babu, K.R. Ramakrishnan, "Robust object tracking with background-weighted local kernels", Computer-Vision and Image Understanding 2008:112:296-309.
  7. S. Zhang, H. Yao, S. Liu. Partial occlusion robust object tracking using an effective appearance model, Visual Communications and Image Processing 2010:1-8.
  8. A. Adam, E. Rivlin, I. Shimshoni. Robust fragments-based tracking using the integral histogram, Proc. CVPR, 2006:1:798-805.
  9. Z. Fan, Y. Wu, M. Yang. Multiple collaborative kernel tracking, Proc. CVPR, 2005:2:502-509.
  10. V. Rowghanian, K. Ansari-Asl. Object tracking by mean shift and radial basis function neural networks, 2015:1-18.
  11. D. Jia, L. Zhang, C. Li. The improvement of mean-shift algorithm in target tracking, International Journal of Security and Its Applications, 2015:9(2):21-28. https://doi.org/10.14257/ijsia.2015.9.2.03
  12. J. Ning, L. Zhang, D. Zhang, C. Wu. Robust mean-shift tracking with corrected background-weighted histogram. IET Comput. Vis, 2012:6:62-69. https://doi.org/10.1049/iet-cvi.2009.0075