Abstract
As the needs of real-time visual object tracking are increasing in various kinds of application fields such as surveillance, entertainment, etc., kernel-based mean-shift tracking has received more interests. One of major issues in kernel-based mean-shift tracking is to be robust under partial or full occlusion status. This paper presents a real-time mean-shift tracking which is robust in partial occlusion by applying multi-mode local kernel weight. In the proposed method, a kernel is divided into multiple sub-kernels and each sub-kernel has a kernel weight to be determined according to the location of the sub-kernel. The experimental results show that the proposed method is more stable than the previous methods with multi-mode kernels in partial occlusion circumstance.
최근, 감시시스템, 게임, 영화등 다양한 분야에서 영상을 이용한 실시간 객체 추적의 필요성이 높아짐에 따라, 커널기반 mean-shift 추적 기법에 대한 관심이 높아지고 있다. 커널 기반 mean-shift 객체 추적에 있어서 주요한 몇 가지 문제점들 중, 첫번째로 추적 목표 객체에 대한 부분 가림 흑은 전체 가림 상황에서의 객체 추적의 문제를 들 수 있다. 본 논문에서는 멀티모드 지역적 커널 가중치를 적용함드로써 부분 가림 상황에서도 안정적드로 객체를 추적할 수 있는 실시간 mean-shift 추적 기법을 제안한다. 제안기법에서는 단일 커널을 사용하는 대신 여러 개의 서브 커널들로 구성된 커널을 사용하고, 각 서브 커널의 위치에 따른 지역적 커널 가중치를 적용한다. 기존의 멀티모드 커널 기반의 방법과 비교한 실힘을 통하여 본 제안 방법이 보다 안정적드로 객체를 추적할 수 있음을 보였다.