Kim, Yoojun;Kim, Hyunjun;Sim, Sunghan;Ham, Youngjib
International conference on construction engineering and project management
/
2022.06a
/
pp.904-911
/
2022
Occlusion is one of the most challenging problems for computer vision-based construction monitoring. Due to the intrinsic dynamics of construction scenes, vision-based technologies inevitably suffer from occlusions. Previous researchers have proposed the occlusion handling methods by leveraging the prior information from the sequential images. However, these methods cannot be employed for construction object detection in non-sequential images. As an alternative occlusion handling method, this study proposes a data augmentation-based framework that can enhance the detection performance under occlusions. The proposed approach is specially designed for rebar occlusions, the distinctive type of occlusions frequently happen during construction worker detection. In the proposed method, the artificial rebars are synthetically generated to emulate possible rebar occlusions in construction sites. In this regard, the proposed method enables the model to train a variety of occluded images, thereby improving the detection performance without requiring sequential information. The effectiveness of the proposed method is validated by showing that the proposed method outperforms the baseline model without augmentation. The outcomes demonstrate the great potential of the data augmentation techniques for occlusion handling that can be readily applied to typical object detectors without changing their model architecture.
In this paper, we propose a ball tracking algorithm robust against occlusion in broadcasting soccer video sequences. Soccer ball tracking is a challenging task due to occlusion, fast motion and fast direction changes. Many works have been proposed based on ball trajectory. However, this approach requires heavy computational complexity. We propose a ball tracking algorithm with occlusion handling capability. Initial ball location is calculated using the circular hough transform. Then, the ball is tracked using template matching. Occlusion is handled by matching score. In occlusion cases, we generate a set of ball candidates. The ball candidates which exist in the previous frame were removed. On the other hand, the new appearing candidate is determined as the ball. Experiments with several broadcasting soccer video sequences show that the proposed method efficiently handles the occlusion cases.
In recent years, there has been increasing use of automatic surveillance and monitoring systems based on vision sensors. Humans are often the most important target in the systems, but processing human images is difficult due to the small sizes and flexible motions. Particularly, occlusion among pedestrians in camera images brings practical problems. In this paper, we propose a novel method to separate image regions of occluded pedestrians. A camera equipped with a wide angle lens is attached to the ceiling of a building corridor for sensing pedestrians with a wide field of view. The output images of the camera are processed for the human detection, tracking, identification, distortion correction, and occlusion handling. We resolve the occlusion problem adaptively depending on the angles and positions of their heads. Experimental results showed that the proposed method is more efficient and accurate compared with existing methods.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.13
no.4
/
pp.2094-2112
/
2019
Focusing on the issue that the conventional Kernel Correlation Filter (KCF) algorithm has poor performance in handling scale change and obscured objects, this paper proposes an anti-occlusion and scale adaptive tracking algorithm in the basis of KCF. The average Peak-to Correlation Energy and the peak value of correlation filtering response are used as the confidence indexes to determine whether the target is obscured. In the case of non-occlusion, we modify the searching scheme of the KCF. Instead of searching for a target with a fixed sample size, we search for the target area with multiple scales and then resize it into the sample size to compare with the learnt model. The scale factor with the maximum filter response is the best target scaling and is updated as the optimal scale for the following tracking. Once occlusion is detected, the model updating and scale updating are stopped. Experiments have been conducted on the OTB benchmark video sequences for compassion with other state-of-the-art tracking methods. The results demonstrate the proposed method can effectively improve the tracking success rate and the accuracy in the cases of scale change and occlusion, and meanwhile ensure a real-time performance.
Effective and efficient estimation of camera poses is a core method in implementing augmented reality systems or applications. The most common one is using markers, e.g., ARToolkit. However, use of markers suffers from a notorious problem that is vulnerable to occlusion. To overcome this, this paper proposes a top-down method that iteratively estimates the current camera pose by using particle swarm optimization. Through experiments, it was confirmed that the proposed method enables to implement augmented reality on severely-occluded markers.
Journal of the Institute of Electronics and Information Engineers
/
v.54
no.2
/
pp.99-105
/
2017
Generally, stereo matching methods are used to estimate depth information based on color and spatial similarity. However, most depth estimation methods suffer from the occlusion region because occlusion regions cause inaccurate depth information. Moreover, they do not consider the temporal dimension when estimating the disparity. In this paper, we propose a temporal stereo matching method, considering occlusion and disregarding inaccurate temporal depth information. First, we apply a global stereo matching algorithm to estimate the depth information, we segment the image to occlusion and non-occlusion regions. After occlusion detection, we fill the occluded region with a reasonable disparity value that are obtained from neighboring pixels of the current pixel. Then, we apply a temporal disparity estimation method using the reliable information. Experimental results show that our method detects more accurate occlusion regions, compared to a conventional method. The proposed method increases the temporal consistency of estimated disparity maps and outperforms per-frame methods in noisy images.
The Journal of Korean Institute of Communications and Information Sciences
/
v.37
no.6A
/
pp.458-463
/
2012
In this paper, we propose a direct depth map acquisition method for the convergence camera array as well as the parallel camera array. The conventional methods perform image rectification to reduce complexity and improve accuarcy. However, image rectification may lead to unwanted consequences for the convergence camera array. Thus, the proposed method excludes image rectification and directly extracts depth values using the epipolar constraint. In order to acquire a more accurate depth map, occlusion detection and handling processes are added. Reasonable depth values are assigned to the obtained occlusion region by the distance and color differences from neighboring pixels. Experimental results show that the proposed method has fewer limitations than the conventional methods and generates more accurate depth maps stably.
IEIE Transactions on Smart Processing and Computing
/
v.1
no.2
/
pp.73-77
/
2012
This paper reports a combined depth- and model-based face detection and tracking approach. The proposed algorithm consists of four functional modules; i) color-based candidate region extraction, ii) generation of the depth histogram for handling occlusion, iii) rotation-invariant face region detection using ellipse fitting, and iv) face tracking based on motion prediction. This technique solved the occlusion problem under complicated environment by detecting the face candidate region based on the depth-based histogram and skin colors. The angle of rotation was estimated by the ellipse fitting method in the detected candidate regions. The face region was finally determined by inversely rotating the candidate regions by the estimated angle using Haar-like features that were robustly trained robustly by the frontal face.
As the needs of real-time visual object tracking are increasing in various kinds of application fields such as surveillance, entertainment, etc., kernel-based mean-shift tracking has received more interests. One of major issues in kernel-based mean-shift tracking is to be robust under partial or full occlusion status. This paper presents a real-time mean-shift tracking which is robust in partial occlusion by applying multi-mode local kernel weight. In the proposed method, a kernel is divided into multiple sub-kernels and each sub-kernel has a kernel weight to be determined according to the location of the sub-kernel. The experimental results show that the proposed method is more stable than the previous methods with multi-mode kernels in partial occlusion circumstance.
International Journal of Fuzzy Logic and Intelligent Systems
/
v.12
no.1
/
pp.60-65
/
2012
This paper presents a method for occluded object based motion estimation and tracking system in dynamic image sequences using particle filter with 3D reconstruction. A unique characteristic of this study is its ability to cope with partial occlusion based continuous motion estimation using particle filter inspired from the mirror neuron system in human brain. To update a prior knowledge about the shape or motion of objects, firstly, fundamental 3D reconstruction based occlusion tracing method is applied and object landmarks are determined. And optical flow based motion vector is estimated from the movement of the landmarks. When arbitrary partial occlusions are occurred, the continuous motion of the hidden parts of object can be estimated by particle filter with optical flow. The resistance of the resulting estimation to partial occlusions enables the more accurate detection and handling of more severe occlusions.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.