DOI QR코드

DOI QR Code

LED-ID 시스템에서 채널 차단에 따른 성능 열화를 줄이기 위한 저 상관 순환 지연 기법

The blocking channel to reduce the performance decrease using the low correlation with cyclic delay scheme in LED-ID system

  • Lee, Kyu-Jin (Dept. of Electronic Engineering, Semyung University) ;
  • Kim, Gui-Jung (Dept. of Medical IT Engineering, Konyang University)
  • 투고 : 2015.08.11
  • 심사 : 2015.10.20
  • 발행 : 2015.10.28

초록

본 논문은 LED-ID 시스템에서 채널 차단에 따른 성능 열화를 줄이기 위한 저 상관(Low correlation) 순환 지연 기법에 대해서 연구하였다. LED-ID 시스템은 가시광을 기반으로 하여 데이터를 송수신 한다. 하지만 빛의 직진성 때문에 실내 구조, 환경에 따라 채널 단절이 발생한다. 채널 단절에 의해 발생하는 데이터 손상과 빛을 연속적으로 차단하여 발생하는 연집오류로 인하여 LED-ID 시스템의 성능을 저하시키게 된다. 제안 시스템은 데이터들 간의 낮은 상관관계를 이용하여 빛을 연속적으로 차단하여 발생하는 연집오류에 대한 문제점을 해결하고 순환 지연 기법을 이용하여 시간 다이버시티 이득을 극대화 하여 성능을 향상 시켰다. 시뮬레이션 파라미터에 따라 컴퓨터 시뮬레이션을 이용하여 시스템의 성능을 산출 하였다. 시뮬레이션 결과는 제안 시스템이 기존 시스템과 일정한 시간 지연을 통한 순환 지연 기법보다 성능이 우수함을 확인 할 수 있다.

We proposed the blocking channel to reduce the performance decrease using the low correlation with cyclic delay scheme in LED-ID system. LED-ID is based on the visible light to transmit the data. However, It is occurred the block channel by structure or environment of indoor for light of straightness. LED-ID system is degraded the performance by the block channel as loss of data, and burst error. To solve the block channel, the proposed system is overcome the burst error by low correlation among data, which is able to obtain the maximize time diversity gain to improve the performance of BER by cyclic delay scheme. The BER performance is evaluated by computer simulation according to channel parameter. The simulation results shows that proposed system gives much better performance than conventional system and constant cyclic delay scheme system.

키워드

참고문헌

  1. S. Z. Wang, "photon computer is vividly portrayed", Electron Science and Technology, vol. 4, pp. 12-13, Jun 2006.
  2. Yuichi Tanaka, "A Study on Optical Wireless Communication Systems and Their Applications", Keio University, January 2002.
  3. Masao Nakagawa, "Wireless home link", IEICE Trans. Commun., Vol.E82-B, No.12, pp. 1893-1896, December 1999.
  4. C.P Kuo, R.M Fletcher, T.D. Osentowski, M.C. Lardizabal, and M.G. Craford, "High performance AlGaInP visible light-emitting diodes", Appl. Phys. Lett., Vol.57, No.27, pp.2937-3939, 1990. https://doi.org/10.1063/1.103736
  5. Yuichi TANAKA and Masao NAKAGAWA, "Optical Parallel Transmission with Multi-Eavelength for High Speed Communications on Indoor Channels" IEICE Trans. Commun, vol E91-B, No. 4, April 1998.
  6. F. R. Gfeller, and U. Bapst, "Wireless in-house data communication via diffuse infraredradiation", Proc. IEEE, Vol. 67, No.11, pp. 1474-1486, 1979. https://doi.org/10.1109/PROC.1979.11508
  7. J. Vucic et al., "513 Mbit/s Visible Light Communications Link Based on DMT-Modulation of a White LED," J. Lightw. Technol., vol. 28, no. 24, pp. 3512-3518, December, 2010. https://doi.org/10.1109/JLT.2010.2089602
  8. R.M. Gagliardi and S. Karp, "Optical Communications," McGraw-Hill, New York, 1976.
  9. S. Rajagopal, et al., "TG7 technical considerations document," IEEE 802.15.7 Task Group Document, Jul. 2009.
  10. Changping Li, "Visible Light Communicaion Applied in Intelligent Transportation Systems", KyungHee University, 2013.
  11. Kaur. M, "Electromagnetic interference", ICECT Vol. pp.1-5, April 2011.
  12. Toshihiko Komine and Masao Nakagawa, "Fundamental Analysis for Visible-Light Communication System using LED Lights" IEEE Transaction on Consumer Electronics, Vol. 50, No.1, February 2004.
  13. J. M. Kahn, and J. R Barry, "Wireless infrared communications", Proc. IEEE, Vol. 85, No. 2, pp. 265-298, 1997. https://doi.org/10.1109/5.554222
  14. T. Nakamura and T. Takebe, "Development of znse-based white light emmiting diodes", OPTRONICS, vol. 19, pp. 126-131, 2000.
  15. J. P. Savicki and S. P. Morgan, "Hemispherical concentrators and spectral filters for planar sensors in diffuse radiation fields", vol. 33, no. 34, pp. 8057-8061, 1994 https://doi.org/10.1364/AO.33.008057