DOI QR코드

DOI QR Code

High fructose and high fat diet increased bone volume of trabecular and cortical bone in growing female rats

고과당 및 고지방 식이의 섭취가 성장기 동물모델의 골성장과 골성숙에 미치는 영향

  • Ahn, Hyejin (Department of Medical Nutrition, Kyung Hee University) ;
  • Yoo, SooYeon (Department of Medical Nutrition, Kyung Hee University) ;
  • Park, Yoo-Kyoung (Department of Medical Nutrition, Kyung Hee University)
  • 안혜진 (경희대학교 동서의학대학원 의학영양학과) ;
  • 유수연 (경희대학교 동서의학대학원 의학영양학과) ;
  • 박유경 (경희대학교 동서의학대학원 의학영양학과)
  • Received : 2015.09.10
  • Accepted : 2015.10.01
  • Published : 2015.10.31

Abstract

Purpose: The objective of this study was to investigate the effects of a high fructose and fat diet on bone growth and maturation in growing female rats. Methods: Three-week-old female SD rats were randomly assigned to four experimental groups; the control group (CON: fed control diet based on AIN-93G, n = 8); the high-fructose diet group (HFrc: fed control diet with 30% fructose, n = 8); the high-fat diet group (Hfat: fed control diet with 45 kcal% fat, n = 8); and the high-fat diet plus high fructose group (HFrc + HFat: fed diets 45 kcal% fat with 30% fructose, n = 8). Each group was assigned their respective diets for the remaining eight weeks. Bone-related parameters (bone mineral density (BMD) and structural parameters, osteocalcin (OC), deoxypyridinoline (DPD)) and morphologic changes of kidney were analyzed at the end of the experiment. Results: Final body weights and weight gain were higher in the HFat and HFrc + HFat groups and showed higher tendency in the HFrc group compared with those of the CON group (p < 0.05); however, no significant difference in caloric intake was observed among the four experimental groups. The serum OC levels of the HFrc and HFrc + HFat groups were lower than those of the CON and HFat groups (p < 0.05). Urinary levels of DPD did not differ among the experimental groups. BV/TV and Tb.N of trabecular bone were higher in the HFrc + HFat group and showed a higher tendency in the HFrc group than those of the CON and HFat groups (p < 0.05). Tb.Pf of trabecular bone were lower in the HFrc + HFat group than those in the CON and HFat groups (p < 0.05). However, no difference in trabecular BMD was observed among the experimental groups. Cortical bone volume was higher in the HFat and HFrc + HFat groups than in the CON and HFrc groups (p < 0.05). No morphology change in kidney was observed among the experimental groups. Conclusion: Our study suggests that 8 weeks of high-fructose and high fat intake could improve the bone quality (Structural parameters) of trabecular and cortical bone of tibia in growing female rats.

본 연구는 성장기 동물모델의 고과당 식이섭취가 골성장 (bone growth) 및 성숙 (bone maturation)에 미치는 영향을 연구하기 위해 수행되었다. 이를 평가하기 위해 생화학적 표지자 (biochemical markers), 경골의 구조학적 파라미터 (structural parameters) 및 골밀도 (BMD), 신장의 조직학적 변화를 측정하였고, 결과를 요약하면 다음과 같다. 1) 30% 고과당 섭취 (8주 동안) 및 30% 고과당 + 45 kcal% 고지방 섭취는 경골 내 해면골 (Tibia trabecular bone)의 부피비 (BV/TV), 해면골의 평균 개수 (Tb.N) 및 패턴요소 (Tb.Pf)를 향상시켰다. 2) 45 kcal% 고지방 섭취는 경골 내 피질골 (Tibia trabecular bone)의 부피를 향상시켰다. 3) 30% 고과당 섭취는 신장의 출혈 (interstitial bleeding), 공포화 변성 (vacuolation), 사구체 울혈 (glomerular congestion) 등의 병변을 유발하지 않았다. 4) 30% 고과당 섭취는 혈중 OC 농도를 낮추었고, 요 중 DPD농도에는 영향을 주지 않았다. 5) 8주 동안의 30% 고과당 섭취는 유의한 경향의 체중증가를 유도하였고, 45 kcal% 고지방 섭취는 유의적인 체중증가를 나타내었다. 본 연구 결과에 따르면 고과당의 섭취는 신기능의 손상 없이 성장기 해면골을 더욱 치밀하게 만드는 것으로 나타났다. 많은 선행연구들을 통하여 설탕이나 포도당의 과잉 섭취가 골 소실을 유발한다고 보고되어 왔으며, 본 연구를 포함한 이전 연구들을 종합해보면 고과당 섭취는 설탕이나 포도당 과잉 섭취가 유발하는 골 소실을 유발하지는 않는 것으로 보인다. 하지만 이러한 결과가 고과당 섭취가 골형성을 돕는다는 것을 의미하지는 않는다. 따라서 본 연구의 결과는 골의 형성 및 성숙에 중요한 시기인 청소년기에 안전한 과당섭취 가이드라인을 위한 초석을 다지는데 참고자료로서 사용될 수 있으며, 설탕이나 포도당 등을 과당으로 대체하여 섭취하는 것이 골 건강에 도움이 될 수 있을지는 향후 추가적인 연구가 필요할 것으로 보인다.

Keywords

References

  1. Kim SD, Moon HK, Park JS, Yang HR, Yi YJ, Han EJ, Lee YC, Shin GY, Kim JH, Chae YZ. The content of macrominerals in beverages, liquid teas, and liquid coffees. J Korean Soc Food Sci Nutr 2012; 41(8): 1134-1143. https://doi.org/10.3746/jkfn.2012.41.8.1134
  2. Kim SD, Moon HK, Park JS, Lee YC, Shin GY, Jo HB, Kim BS, Kim JH, Chae YZ. Macromineral intake in non-alcoholic beverages for children and adolescents: using the fourth Korea National Health and Nutrition Examination Survey (KNHANES ?, 2007-2009). Korean J Nutr 2013; 46(1): 50-60. https://doi.org/10.4163/kjn.2013.46.1.50
  3. Chung SJ, Kim JH, Lee JS, Lee DH, Kim SH, Yu CH. A suggestion to develop a nutrition policy on food and nutrition labeling and education systems for fast food and carbonated soft drinks in Korea. Korean J Nutr 2004; 37(5): 394-405.
  4. Ruff JS, Hugentobler SA, Suchy AK, Sosa MM, Tanner RE, Hite ME, Morrison LC, Gieng SH, Shigenaga MK, Potts WK. Compared to sucrose, previous consumption of fructose and glucose monosaccharides reduces survival and fitness of female mice. J Nutr 2015; 145(3): 434-441. https://doi.org/10.3945/jn.114.202531
  5. Chung M, Ma J, Patel K, Berger S, Lau J, Lichtenstein AH. Fructose, high-fructose corn syrup, sucrose, and nonalcoholic fatty liver disease or indexes of liver health: a systematic review and meta-analysis. Am J Clin Nutr 2014; 100(3): 833-849. https://doi.org/10.3945/ajcn.114.086314
  6. Stanhope KL, Bremer AA, Medici V, Nakajima K, Ito Y, Nakano T, Chen G, Fong TH, Lee V, Menorca RI, Keim NL, Havel PJ. Consumption of fructose and high fructose corn syrup increase postprandial triglycerides, LDL-cholesterol, and apolipoprotein-B in young men and women. J Clin Endocrinol Metab 2011; 96(10): E1596-E1605. https://doi.org/10.1210/jc.2011-1251
  7. Douard V, Asgerally A, Sabbagh Y, Sugiura S, Shapses SA, Casirola D, Ferraris RP. Dietary fructose inhibits intestinal calcium absorption and induces vitamin D insufficiency in CKD. J Am Soc Nephrol 2010; 21(2): 261-271. https://doi.org/10.1681/ASN.2009080795
  8. Palanisamy N, Viswanathan P, Anuradha CV. Effect of genistein, a soy isoflavone, on whole body insulin sensitivity and renal damage induced by a high-fructose diet. Ren Fail 2008; 30(6): 645-654. https://doi.org/10.1080/08860220802134532
  9. Dissard R, Klein J, Caubet C, Breuil B, Siwy J, Hoffman J, Sicard L, Ducasse L, Rascalou S, Payre B, Buleon M, Mullen W, Mischak H, Tack I, Bascands JL, Buffin-Meyer B, Schanstra JP. Long term metabolic syndrome induced by a high fat high fructose diet leads to minimal renal injury in C57BL/6 mice. PLoS One 2013; 8(10):e76703. https://doi.org/10.1371/journal.pone.0076703
  10. Whiting SJ, Vatanparast H, Baxter-Jones A, Faulkner RA, Mirwald R, Bailey DA. Factors that affect bone mineral accrual in the adolescent growth spurt. J Nutr 2004; 134(3): 696S-700S. https://doi.org/10.1093/jn/134.3.696S
  11. Singh D, Sanyal S, Chattopadhyay N. The role of estrogen in bone growth and formation: changes at puberty. Cell Health Cytoskelet 2011; 3(1): 2-12.
  12. Kang BS, Park MS, Cho YS, Lee JW. Beverage consumption and related factors among adolescents in the Chungnam urban area. Korean J Community Nutr 2006; 11(4): 469-478.
  13. Song MJ, An EM, Shon HS, Kim SB, Cha YS. A study on the status of beverage consumption of the middle school students in Jeonju. Korean J Community Nutr 2005; 10(2): 174-182.
  14. Bass EF, Baile CA, Lewis RD, Giraudo SQ. Bone quality and strength are greater in growing male rats fed fructose compared with glucose. Nutr Res 2013; 33(12): 1063-1071. https://doi.org/10.1016/j.nutres.2013.08.006
  15. Clarke B. Normal bone anatomy and physiology. Clin J Am Soc Nephrol 2008; 3 Suppl 3: S131-S139. https://doi.org/10.2215/CJN.04151206
  16. Seibel MJ. Biochemical markers of bone turnover: part I: biochemistry and variability. Clin Biochem Rev 2005; 26(4): 97-122.
  17. Vasikaran SD. Utility of biochemical markers of bone turnover and bone mineral density in management of osteoporosis. Crit Rev Clin Lab Sci 2008; 45(2): 221-258. https://doi.org/10.1080/10408360801949442
  18. Tsanzi E, Light HR, Tou JC. The effect of feeding different sugarsweetened beverages to growing female Sprague-Dawley rats on bone mass and strength. Bone 2008; 42(5): 960-968. https://doi.org/10.1016/j.bone.2008.01.020
  19. Felice JI, Gangoiti MV, Molinuevo MS, McCarthy AD, Cortizo AM. Effects of a metabolic syndrome induced by a fructose-rich diet on bone metabolism in rats. Metabolism 2014; 63(2): 296-305. https://doi.org/10.1016/j.metabol.2013.11.002
  20. Li YQ, Xing XH, Wang H, Weng XL, Yu SB, Dong GY. Dosedependent effects of genistein on bone homeostasis in rats' mandibular subchondral bone. Acta Pharmacol Sin 2012; 33(1): 66-74. https://doi.org/10.1038/aps.2011.136
  21. Piekarz AV, Ward WE. Effect of neonatal exposure to genistein on bone metabolism in mice at adulthood. Pediatr Res 2007; 61(1): 48-53. https://doi.org/10.1203/01.pdr.0000250200.94611.03
  22. Seidlova-Wuttke D, Jarry H, Jager Y, Wuttke W. Bone development in female rats maintained with soy-free or soy-containing food as determined by computer-assisted tomography and serum bone markers. J Bone Miner Metab 2008; 26(4): 321-327. https://doi.org/10.1007/s00774-007-0838-9
  23. Kretowicz M, Johnson RJ, Ishimoto T, Nakagawa T, Manitius J. The impact of fructose on renal function and blood pressure. Int J Nephrol 2011; 2011: 315879.
  24. Mohamed Salih S, Nallasamy P, Muniyandi P, Periyasami V, Carani Venkatraman A. Genistein improves liver function and attenuates non-alcoholic fatty liver disease in a rat model of insulin resistance. J Diabetes 2009; 1(4): 278-287. https://doi.org/10.1111/j.1753-0407.2009.00045.x
  25. Nakagawa T, Hu H, Zharikov S, Tuttle KR, Short RA, Glushakova O, Ouyang X, Feig DI, Block ER, Herrera-Acosta J, Patel JM, Johnson RJ. A causal role for uric acid in fructose-induced metabolic syndrome. Am J Physiol Renal Physiol 2006; 290(3): F625-F631. https://doi.org/10.1152/ajprenal.00140.2005
  26. Shih CC, Lin CH, Lin WL, Wu JB. Momordica charantia extract on insulin resistance and the skeletal muscle GLUT4 protein in fructose-fed rats. J Ethnopharmacol 2009; 123(1): 82-90. https://doi.org/10.1016/j.jep.2009.02.039
  27. Hamrick MW, Pennington C, Newton D, Xie D, Isales C. Leptin deficiency produces contrasting phenotypes in bones of the limb and spine. Bone 2004; 34(3): 376-383. https://doi.org/10.1016/j.bone.2003.11.020
  28. Douard V, Sabbagh Y, Lee J, Patel C, Kemp FW, Bogden JD, Lin S, Ferraris RP. Excessive fructose intake causes 1,25-(OH)(2)D (3)-dependent inhibition of intestinal and renal calcium transport in growing rats. Am J Physiol Endocrinol Metab 2013; 304(12): E1303-E1313. https://doi.org/10.1152/ajpendo.00582.2012
  29. Douard V, Suzuki T, Sabbagh Y, Lee J, Shapses S, Lin S, Ferraris RP. Dietary fructose inhibits lactation-induced adaptations in rat 1,25-(OH)?D? synthesis and calcium transport. FASEB J 2012; 26(2): 707-721. https://doi.org/10.1096/fj.11-190264