DOI QR코드

DOI QR Code

ON SKEW SYMMETRIC OPERATORS WITH EIGENVALUES

  • ZHU, SEN (DEPARTMENT OF MATHEMATICS JILIN UNIVERSITY)
  • Received : 2015.01.04
  • Published : 2015.11.01

Abstract

An operator T on a complex Hilbert space H is called skew symmetric if T can be represented as a skew symmetric matrix relative to some orthonormal basis for H. In this paper, we study skew symmetric operators with eigenvalues. First, we provide an upper-triangular operator matrix representation for skew symmetric operators with nonzero eigenvalues. On the other hand, we give a description of certain skew symmetric triangular operators, which is based on the geometric relationship between eigenvectors.

Keywords

Acknowledgement

Supported by : National Science Foundation of China

References

  1. N. I. Akhiezer and I. M. Glazman, Theory of Linear Operators in Hilbert Space, Dover Publications, Inc., New York, 1993.
  2. Y. Chen, H. Koo, and Y. J. Lee, Ranks of commutators of Toeplitz operators on the harmonic Bergman space, Integral Equations Operator Theory 75 (2013), no. 1, 31-38. https://doi.org/10.1007/s00020-012-2020-6
  3. Y. Chen, H. Koo, and Y. J. Lee, Ranks of complex skew symmetric operators and applications to Toeplitz operators, J. Math. Anal. Appl. 425 (2015), no. 2, 734-747. https://doi.org/10.1016/j.jmaa.2015.01.005
  4. N. Chevrot, E. Fricain, and D. Timotin, The characteristic function of a complex sym- metric contraction, Proc. Amer. Math. Soc. 135 (2007), no. 9, 2877-2886 (electronic). https://doi.org/10.1090/S0002-9939-07-08803-X
  5. M. J. Cowen and R. G. Douglas, Complex geometry and operator theory, Acta Math. 141 (1978), no. 3-4, 187-261. https://doi.org/10.1007/BF02545748
  6. C. Fong and C. L. Jiang, Normal operators similar to irreducible operators, Acta Math. Sinica (N.S.) 10 (1994), no. 2, 132-135. https://doi.org/10.1007/BF02580419
  7. S. R. Garcia and M. Putinar, Complex symmetric operators and applications, Trans. Amer. Math. Soc. 358 (2006), no. 3, 1285-1315 (electronic). https://doi.org/10.1090/S0002-9947-05-03742-6
  8. S. R. Garcia and M. Putinar, Complex symmetric operators and applications. II, Trans. Amer. Math. Soc. 359 (2007), no. 8, 3913-3931 (electronic). https://doi.org/10.1090/S0002-9947-07-04213-4
  9. S. R. Garcia and W. R. Wogen, Complex symmetric partial isometries, J. Funct. Anal. 257 (2009), no. 4, 1251-1260. https://doi.org/10.1016/j.jfa.2009.04.005
  10. T. M. Gilbreath and W. R. Wogen, Remarks on the structure of complex symmetric operators, Integral Equations Operator Theory 59 (2007), no. 4, 585-590. https://doi.org/10.1007/s00020-007-1528-7
  11. K. Guo, Y. Ji, and S. Zhu, A $C^{\ast}$-algebra approach to complex symmetric operators, Trans. Amer. Math. Soc., doi: 10.1090/S0002-9947-2015-06215-1.
  12. K. Guo and S. Zhu, A canonical decomposition of complex symmetric operators, J. Operator Theory 72 (2014), no. 2, 529-547. https://doi.org/10.7900/jot.2013aug15.2007
  13. C. G. Li and T. T. Zhou, Skew symmetry of a class of operators, Banach J. Math. Anal. 8 (2014), no. 1, 279-294. https://doi.org/10.15352/bjma/1381782100
  14. C. G. Li and S. Zhu, Skew symmetric normal operators, Proc. Amer. Math. Soc. 141 (2013), no. 8, 2755-2762. https://doi.org/10.1090/S0002-9939-2013-11759-4
  15. S. M. Zagorodnyuk, On a J-polar decomposition of a bounded operator and matrices of J-symmetric and J-skew-symmetric operators, Banach J. Math. Anal. 4 (2010), no. 2, 11-36. https://doi.org/10.15352/bjma/1297117238
  16. S. M. Zagorodnyuk, On the complex symmetric and skew-symmetric operators with a simple spectrum, Symmetry Integrability Geom. Methods Appl. 7 (2011), 1-9.
  17. S. Zhu, Approximate unitary equivalence to skew symmetric operators, Complex Anal. Oper. Theory 8 (2014), no. 7, 1565-1580. https://doi.org/10.1007/s11785-014-0369-z
  18. S. Zhu, Skew symmetric weighted shifts, Banach J. Math. Anal. 9 (2015), no. 1, 253-272. https://doi.org/10.15352/bjma/09-1-19
  19. S. Zhu and C. G. Li, Complex symmetric weighted shifts, Trans. Amer. Math. Soc. 365 (2013), no. 1, 511-530. https://doi.org/10.1090/S0002-9947-2012-05642-X
  20. S. Zhu and J. Zhao, The Riesz decomposition theorem for skew symmetric operators, J. Korean Math. Soc. 52 (2015), no. 2, 403-416. https://doi.org/10.4134/JKMS.2015.52.2.403