Acknowledgement
Supported by : National Science Foundation of China
References
- N. I. Akhiezer and I. M. Glazman, Theory of Linear Operators in Hilbert Space, Dover Publications, Inc., New York, 1993.
- Y. Chen, H. Koo, and Y. J. Lee, Ranks of commutators of Toeplitz operators on the harmonic Bergman space, Integral Equations Operator Theory 75 (2013), no. 1, 31-38. https://doi.org/10.1007/s00020-012-2020-6
- Y. Chen, H. Koo, and Y. J. Lee, Ranks of complex skew symmetric operators and applications to Toeplitz operators, J. Math. Anal. Appl. 425 (2015), no. 2, 734-747. https://doi.org/10.1016/j.jmaa.2015.01.005
- N. Chevrot, E. Fricain, and D. Timotin, The characteristic function of a complex sym- metric contraction, Proc. Amer. Math. Soc. 135 (2007), no. 9, 2877-2886 (electronic). https://doi.org/10.1090/S0002-9939-07-08803-X
- M. J. Cowen and R. G. Douglas, Complex geometry and operator theory, Acta Math. 141 (1978), no. 3-4, 187-261. https://doi.org/10.1007/BF02545748
- C. Fong and C. L. Jiang, Normal operators similar to irreducible operators, Acta Math. Sinica (N.S.) 10 (1994), no. 2, 132-135. https://doi.org/10.1007/BF02580419
- S. R. Garcia and M. Putinar, Complex symmetric operators and applications, Trans. Amer. Math. Soc. 358 (2006), no. 3, 1285-1315 (electronic). https://doi.org/10.1090/S0002-9947-05-03742-6
- S. R. Garcia and M. Putinar, Complex symmetric operators and applications. II, Trans. Amer. Math. Soc. 359 (2007), no. 8, 3913-3931 (electronic). https://doi.org/10.1090/S0002-9947-07-04213-4
- S. R. Garcia and W. R. Wogen, Complex symmetric partial isometries, J. Funct. Anal. 257 (2009), no. 4, 1251-1260. https://doi.org/10.1016/j.jfa.2009.04.005
- T. M. Gilbreath and W. R. Wogen, Remarks on the structure of complex symmetric operators, Integral Equations Operator Theory 59 (2007), no. 4, 585-590. https://doi.org/10.1007/s00020-007-1528-7
-
K. Guo, Y. Ji, and S. Zhu, A
$C^{\ast}$ -algebra approach to complex symmetric operators, Trans. Amer. Math. Soc., doi: 10.1090/S0002-9947-2015-06215-1. - K. Guo and S. Zhu, A canonical decomposition of complex symmetric operators, J. Operator Theory 72 (2014), no. 2, 529-547. https://doi.org/10.7900/jot.2013aug15.2007
- C. G. Li and T. T. Zhou, Skew symmetry of a class of operators, Banach J. Math. Anal. 8 (2014), no. 1, 279-294. https://doi.org/10.15352/bjma/1381782100
- C. G. Li and S. Zhu, Skew symmetric normal operators, Proc. Amer. Math. Soc. 141 (2013), no. 8, 2755-2762. https://doi.org/10.1090/S0002-9939-2013-11759-4
- S. M. Zagorodnyuk, On a J-polar decomposition of a bounded operator and matrices of J-symmetric and J-skew-symmetric operators, Banach J. Math. Anal. 4 (2010), no. 2, 11-36. https://doi.org/10.15352/bjma/1297117238
- S. M. Zagorodnyuk, On the complex symmetric and skew-symmetric operators with a simple spectrum, Symmetry Integrability Geom. Methods Appl. 7 (2011), 1-9.
- S. Zhu, Approximate unitary equivalence to skew symmetric operators, Complex Anal. Oper. Theory 8 (2014), no. 7, 1565-1580. https://doi.org/10.1007/s11785-014-0369-z
- S. Zhu, Skew symmetric weighted shifts, Banach J. Math. Anal. 9 (2015), no. 1, 253-272. https://doi.org/10.15352/bjma/09-1-19
- S. Zhu and C. G. Li, Complex symmetric weighted shifts, Trans. Amer. Math. Soc. 365 (2013), no. 1, 511-530. https://doi.org/10.1090/S0002-9947-2012-05642-X
- S. Zhu and J. Zhao, The Riesz decomposition theorem for skew symmetric operators, J. Korean Math. Soc. 52 (2015), no. 2, 403-416. https://doi.org/10.4134/JKMS.2015.52.2.403