References
- H. R. Abdel-Gawad and D. K. Thomas, The Fekete-Szego problem for strongely closeto-convex functions, Proc. Amer. Math. Soc. 114 (1992), no. 2, 345-349. https://doi.org/10.1090/S0002-9939-1992-1065939-0
- K. O. Babalola, On third order Hankel determinant for some classes of univalent functions, Inequal. Theory Appl. 6 (2010), 1-7.
- K. O. Babalola and T. O. Opoola, On the coefficients of certain analytic and univalent functions, Advances in Inequalities for Series, (Edited by S. S. Dragomir and A. Sofo) Nova Science Publishers (2008), 5-17.
- D. Bansal, Upper bound of second Hankel determinant for a new class of analytic functions, Appl. Math. Lett. 26 (2013), no. 1, 103-107. https://doi.org/10.1016/j.aml.2012.04.002
- B. Bhowmik, S. Ponnusamy, and K. J. Wirths, On the Fekete-Szego problem for concave univalent functions, J. Math. Anal. Appl. 373 (2011), no. 2, 432-438. https://doi.org/10.1016/j.jmaa.2010.07.054
- D. G. Cantor, Power series with integral coefficients, Bull. Amer. Math. Soc. 69 (1963), 362-366. https://doi.org/10.1090/S0002-9904-1963-10923-4
- P. L. Duren, Univalent Functions, Grundlehren der Mathematischen Wissenschaften, Band 259, Springer-Verlag, New York, Berlin, Heidelberg and Tokyo, 1983.
- R. Ehrenborg, The Hankel determinant of exponential polynomials, Amer. Math. Monthly 107 (2000), no. 6, 557-560. https://doi.org/10.2307/2589352
- M. Fekete and G. Szego, Eine Benberkung uber ungerada Schlichte funktionen, J. Lond. Math. Soc. 8 (1933), 85-89.
- W. K. Hayman, On the second Hankel determinant of mean univalent functions, Proc. Lond. Math. Soc. (3) 18 (1968), 77-94.
- A. Janteng, S. Halim, and M. Darus, Coefficient inequality for a function whose derivative has a positive real part, J. Inequal. Pure Appl. Math. 7 (2006), no. 2, Article 50, 5 pp.
- F. R. Keogh and E. P. Merkes, A coefficient inequality for certain classes of analytic functions, Proc. Amer. Math. Soc. 20 (1969), 8-12. https://doi.org/10.1090/S0002-9939-1969-0232926-9
- Y. C. Kim, J. H. Choi, and T. Sugawa, Coefficient bounds and convolution properties for certain classes of close-to-convex functions, Proc. Japan Acad. Ser. A Math. Sci. 76 (2000), no. 6, 95-98. https://doi.org/10.3792/pjaa.76.95
- W. Koepf, On the Fekete-Szego problem for close-to-convex functions, Proc. Amer. Math. Soc. 101 (1987), no. 1, 89-95. https://doi.org/10.1090/S0002-9939-1987-0897076-8
- B. Kowalczyk and A. Lecko, The Fekete-Szego inequality for close-to-convex functions with respect to a certain starlike function dependent on a real parameter, J. Inequal. Appl. 2014 (2014), Article 65, 16 pp. https://doi.org/10.1186/1029-242X-2014-16
- S. K. Lee, V. Ravichandran, and S. Subramaniam, Bounds for the second Hankel determinant of certain univalent functions, J. Inequal. Appl. 2013 (2013), Article 281, 17 pp. https://doi.org/10.1186/1029-242X-2013-17
- J. L. Li and H. M. Srivastava, some questions and conjectures in the theory of univalent functions, Rocky Mountain J. Math. 28 (1998), no. 3, 1035-1041. https://doi.org/10.1216/rmjm/1181071753
- R. J. Libera and E. J. Zlotkiewicz, Early coefficients of the inverse of a regular convex function, Proc. Amer. Math. Soc. 85 (1982), no. 2, 225-230. https://doi.org/10.1090/S0002-9939-1982-0652447-5
- R. J. Libera and E. J. Zlotkiewicz, Coefficient bounds for the inverse of a function with derivatives in P, Proc. Amer. Math. Soc. 87 (1983), no. 2, 251-257. https://doi.org/10.1090/S0002-9939-1983-0681830-8
- R. R. London, Fekete-Szego inequalities for close-to-convex functions, Proc. Amer. Math. Soc. 117 (1993), no. 4, 947-950. https://doi.org/10.1090/S0002-9939-1993-1150652-2
- T. H. Macgregor, Functions whose derivative has a positive real part, Trans. Amer. Math. Soc. 104 (1962), 532-537. https://doi.org/10.1090/S0002-9947-1962-0140674-7
- J. W. Noonan and D. K. Thomas, On the second Hankel determinant of areally mean p-valent functions, Trans. Amer. Math. Soc. 223 (1976), 337-346.
- K. I. Noor, Higher order close-to-convex functions, Math. Japon. 37 (1992), no. 1, 1-8.
- R. Parvatham and S. Ponnusamy (Editors), New Trends in Geometric Function Theory and Application, World Scientific Publishing Company, Singapore, New Jersey, London and Hong Kong, 1981.
- C. Pommerenke, On the coefficients and Hankel determinant of univalent functions, J. Lond. Math. Soc. 41 (1966), 111-122.
- S. Ponnusamy, S. K. Sahoo, and H. Yanagihara, Radius of convexity of partial sums of functions in the close-to-convex family, Nonlinear Anal. 95 (2014), 219-228. https://doi.org/10.1016/j.na.2013.09.009
- M. Raza and S. N. Malik, Upper bound of the third Hankel determinant for a class of analytic functions related with Lemniscate of Bernoulli, J. Inequal. Appl. 2013 (2013), 412, 8 pp. https://doi.org/10.1186/1029-242X-2013-8
- T. V. Sudharsana, S. P. Vijayalakshmi, and B. Adolf Stephen, Third Hankel determinant for a subclass of analytic univalent functions, Malaya J. Mat. 2 (2014), no. 4, 438-444.
Cited by
- Bounds on third Hankel determinant for close-to-convex functions vol.7, pp.2, 2015, https://doi.org/10.1515/ausm-2015-0014
- The Bounds of Some Determinants for Starlike Functions of Order Alpha 2017, https://doi.org/10.1007/s40840-017-0476-x
- Bounds on Hankel determinant for starlike and convex functions with respect to symmetric points vol.3, pp.1, 2016, https://doi.org/10.1080/23311835.2016.1160557
- Third-Order Hankel Determinant for Certain Class of Analytic Functions Related with Exponential Function vol.10, pp.10, 2018, https://doi.org/10.3390/sym10100501
- On Hankel Determinant $${{\varvec{H}}}_\mathbf{2}{} \mathbf{(3)}$$H2(3) for Univalent Functions vol.73, pp.3, 2018, https://doi.org/10.1007/s00025-018-0854-1
- The Sharp Bound of the Hankel Determinant of the Third Kind for Starlike Functions of Order 1 / 2 pp.1661-8262, 2019, https://doi.org/10.1007/s11785-018-0819-0
- THE SHARP BOUND FOR THE HANKEL DETERMINANT OF THE THIRD KIND FOR CONVEX FUNCTIONS vol.97, pp.03, 2018, https://doi.org/10.1017/S0004972717001125
- On the Fourth Coefficient of Functions in the Carathéodory Class vol.18, pp.2, 2018, https://doi.org/10.1007/s40315-017-0229-8
- SHARP BOUNDS OF SOME COEFFICIENT FUNCTIONALS OVER THE CLASS OF FUNCTIONS CONVEX IN THE DIRECTION OF THE IMAGINARY AXIS pp.1755-1633, 2019, https://doi.org/10.1017/S0004972718001429