DOI QR코드

DOI QR Code

Using Carboxylmethylated Cellulose as Water-Borne Binder to Enhance the Electrochemical Properties of Li4Ti5O12-Based Anodes

  • Liu, Lili (Department of Chemistry, College of Science, Shanghai University) ;
  • Cheng, Chongling (School of Civil, Environmental, and Chemical Engineering, RMIT University) ;
  • Liu, Hongjiang (Department of Chemistry, College of Science, Shanghai University) ;
  • Shi, Liyi (Department of Chemistry, College of Science, Shanghai University) ;
  • Wang, Dayang (School of Civil, Environmental, and Chemical Engineering, RMIT University)
  • Received : 2015.10.12
  • Accepted : 2015.10.20
  • Published : 2015.10.28

Abstract

The present work reports a systematic study of using carboxymethylated cellulose (CMC) as water-borne binder to produce $Li_4Ti_5O_{12}$-based anodes for manufacture of high rate performance lithium ion batteries. When the LTO-to-CB-to-CMC mass ratio is carefully optimized to be 8:1:0.57, the special capacity of the resulting electrodes is $144mAh{\cdot}g^{-1}$ at 10 C and their capacity retention was 97.7% after 1000 cycles at 1 C and 98.5% after 500 cycles at 5 C, respectively. This rate performance is comparable or even better than that of the electrolytes produced using conventional, organic, polyvinylidene fluoride binder.

Keywords

References

  1. J.-M. Tarascon and M. Armand: Nature, 414 (2001) 359. https://doi.org/10.1038/35104644
  2. J. Cabana, L. Monconduit, D. Larcher and M. R. Palacin: Adv. Mater., 22 (2010) E170. https://doi.org/10.1002/adma.201000717
  3. P. G. Bruce, B. Scrosati and J.-M. Tarascon: Angew. Chem. Int. Ed., 47 (2008) 2930. https://doi.org/10.1002/anie.200702505
  4. V. Etacheri, R. Marom, R. Elazari, G. Salitra and D. Aurbach: Energy Environ. Sci., 4 (2011) 3243. https://doi.org/10.1039/c1ee01598b
  5. J. B. Goodenough: Energy Environ. Sci., 7 (2014) 14. https://doi.org/10.1039/C3EE42613K
  6. A. Nugroho, S. J. Kim, K. Y. Chung and J. Kim: Electrochim. Acta, 78 (2012) 623. https://doi.org/10.1016/j.electacta.2012.06.060
  7. J. Huang and Z. Jiang: Electrochim. Acta, 53 (2008) 7756. https://doi.org/10.1016/j.electacta.2008.05.031
  8. Y. Wang and G. Cao: Adv. Mater., 20 (2008) 2251. https://doi.org/10.1002/adma.200702242
  9. J. Hassoun, S. Panero, P. Simon, P. L. Taberna and B. Scrosati: Adv. Mater., 19 (2007) 1632. https://doi.org/10.1002/adma.200602035
  10. Z. Cui, F. Gao, Z. Cui and J. Qu: J. Power Sources, 207 (2012) 150. https://doi.org/10.1016/j.jpowsour.2012.01.145
  11. A. Ito, D. Li, Y. Ohsawa and Y. Sato: J. Power Sources, 183 (2008) 344. https://doi.org/10.1016/j.jpowsour.2008.04.086
  12. B. L. Ellis, W. R. M. Makahnouk, Y. Makimura, K. Toghill and L.F. Nazar: Nat. Mater., 6 (2007) 749. https://doi.org/10.1038/nmat2007
  13. T.-F. Yi, L.-J. Jiang, J. Shu, C.-B. Yue, R.-S. Zhu and H.-B. Qiao: J. Phys. Chem. Solids, 71 (2010) 1236. https://doi.org/10.1016/j.jpcs.2010.05.001
  14. M. Broussely and G. Archdale: J. Power Sources, 136 (2004) 386. https://doi.org/10.1016/j.jpowsour.2004.03.031
  15. L. Shen, C. Yuan, H. Luo, X. Zhang, K. Xu and F. Zhang: J. Mater. Chem., 21 (2011) 761. https://doi.org/10.1039/C0JM02316G
  16. J. Haetge, P. Hartmann, K. Brezesinski, J. Janek and T. Brezesinski: Chem. Mater., 23 (2011) 4384. https://doi.org/10.1021/cm202185y
  17. N. Li, G. Zhou, F. Li, L. Wen and H.-M. Cheng: Adv. Funct. Mater., 23 (2013) 5429. https://doi.org/10.1002/adfm.201300495
  18. S.-L. Chou, Y. Pan, J.-Z. Wang, H.-K. Liu and S.-X. Dou: Phys. Chem. Chem. Phys., 16 (2014) 20347. https://doi.org/10.1039/C4CP02475C
  19. C. Mangwandi, L. JiangTao, A. B. Albadarin, R. M. Dhenge and G. M. Walker: Powder Technol., 270 (2015) 424. https://doi.org/10.1016/j.powtec.2014.06.021
  20. A. A. Dangi and P. B. Zalodiya: Int. J. Pharm. Investig., 2 (2012) 183. https://doi.org/10.4103/2230-973X.106989
  21. C. Huttl, C. Hettrich, R. Miller, B.-R. Paulke, P. Henklein, H. Rawel and F. F. Bier: BMC Biotechnol., 13 (2013) 1. https://doi.org/10.1186/1472-6750-13-1
  22. U. S. Vogl, P. K. Das, A. Z. Weber, M. Winter, R. Kostecki and S. F. Lux: Langmuir, 30 (2014) 10299. https://doi.org/10.1021/la501791q
  23. B. Lestriez, S. Bahri, I. Sandu, L. Roué and D. Guyomard: Electrochem. Commun., 9 (2007) 2801. https://doi.org/10.1016/j.elecom.2007.10.001
  24. S.-L. Chou, J.-Z. Wang, M. Choucair, H.-K. Liu, J. A. Stride and S.-X. Dou: Electrochem. Commun., 12 (2010) 303. https://doi.org/10.1016/j.elecom.2009.12.024
  25. Z.-J. Han, N. Yabuuchi, K. Shimomura, M. Murase, H. Yui and S. Komaba: Energy Environ. Sci., 5 (2012) 9014. https://doi.org/10.1039/c2ee22292b
  26. S.-L. Chou, J.-Z. Wang, C. Zhong, M.M. Rahman, H.-K. Liu and S.-X. Dou: Electrochim. Acta, 54 (2009) 7519. https://doi.org/10.1016/j.electacta.2009.08.006
  27. J. Li, D.-B. Le, P.P. Ferguson and J.R. Dahn: Electrochim. Acta, 55 (2010) 2991. https://doi.org/10.1016/j.electacta.2010.01.011
  28. S.-L. Chou, X.-W. Gao, J.-Z. Wang, D. Wexler, Z.-X. Wang, L.-Q. Chen and H.-K. Liu: Dalton trans., 40 (2011) 12801. https://doi.org/10.1039/c1dt10396b
  29. C.-C. Li, J.-T. Lee, Y.-L. Tung and C.-R. Yang: J. Mater. Sci., 42 (2007) 5773. https://doi.org/10.1007/s10853-006-1172-7
  30. A. Guerfi, M. Kaneko, M. Petitclerc, M. Mori and K. Zaghib: J. Power Sources, 163 (2007) 1047. https://doi.org/10.1016/j.jpowsour.2006.09.067
  31. W. Porcher, P. Moreau, B. Lestriez, S. Jouanneau, F. Le Cras and D. Guyomard: Ionics, 14 (2008) 583. https://doi.org/10.1007/s11581-008-0215-2
  32. C. Cheng, H. Liu, J. Li, X. Xue, H. Cao, D. Wang and L. Shi: J. Power Sources, 283 (2015) 237. https://doi.org/10.1016/j.jpowsour.2015.02.124